期刊文献+

采用M-矢量和支持向量机的说话人确认系统 被引量:2

Speaker verification system based on M-vector and support vector machine
原文传递
导出
摘要 将UBM子空间中的说话人MLLR自适应得到的M-矢量应用于SVM中,提出了一种新的说话人确认系统.该系统有效地将扰动属性映射算法整合到SVM核函数中,实现在核空间中直接对M-矢量进行信道补偿,从而提高系统对信道干扰的鲁棒性能.实验结果表明:相比传统基于音素类的MLLR-SVM和基于I-矢量的I-vector-SVM基线系统,在不需要大量有文本内容标注的语音数据、复杂度和运算量都很高的自动语音识别系统、因子空间统计量的估计的情况下,本系统可获得与最好的基线系统几乎相当的性能,同时还表现出很强的互补特性.在NIST SRE2008说话人评测数据库上测试结果表明:提出系统的性能与基于I-矢量的说话人确认系统的性能接近,并表现出很强的互补性,融合后的等错误率相对下降了13.3%. A new speaker verification system based on the M-vectors and support vector machine (SVM ) was proposed in this paper .The M-vectors were derived from multiple maximum likelihood linear regression (MLLR) speaker transformations which were calculated for a given speech data with respect to each subspace of the universal background model (UBM ) .Furthermore ,a nuisance attrib-ute projection was introduced into the SVM kernel space to project the M-vectors into a speaker-de-pendent space ,to alleviate the channel and session variability during training and testing .Compared with the traditional phone-class based MLLR-SVM and I-vector -SVM systems ,experimental results show that the proposed system can achieve almost the same good performance as the best baseline sys-tem without large factor statistical calculations and any automatic speech recognition system w hich needs large labeled training data ,complexity and computations .In the NIST SRE2008 evaluation task ,the proposed system can achieve almost the same performances as the state-of-the-art I-vector based system .Large complementary information has been demonstrated in a relative 13.3% EER re-duction after system fusion .
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第8期63-68,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划专项基金资助项目(2012CB326405) 国家自然科学基金资助项目(61273264) 上海市青年科技英才扬帆计划资助项目(14YF1409300)
关键词 语音识别 说话人确认 最大似然线性回归 扰动属性映射 支持向量机 M-矢量 speech recognition speaker verification maximum likelihood linear regression nuisance attribute projection support vector machines M-vector
  • 相关文献

参考文献1

  • 1Tomi Kinnunen,Haizhou Li.An overview of text-independent speaker recognition: From features to supervectors[J].Speech Communication.2009(1)

同被引文献14

  • 1郭武,戴礼荣,王仁华.采用UBM更新量作为支持向量机特征的说话人确认[J].清华大学学报(自然科学版),2008,48(S1):704-707. 被引量:4
  • 2Campbell W,Sturim D,Reynolds D.Support vector machinesusing GMM supervectors for speaker verification[J].SignalProcess Letters,2006,13(5):308-311.
  • 3Sarkar S,Rao K S.Speaker verification in noisy environmentusing GMM supervectors[C].2013 National Conferenceon Communications,2013:1-5.
  • 4Dehak N,Kenny P J,Dehak R,et al.Front-end factor analysisfor speaker verification[J].Audio,Speech,and LanguageProcessing,2011,19(4):788-798.
  • 5Kanagasundaram A,Deana D,Sridharan S,et al.I-vectorbased speaker recognition using advanced channel compensationtechniques[J].Computer Speech and Language,2014,28(1):121-140.
  • 6Naseem I,Togneri R,Bennamoun M.Sparse representationfor speaker identification[C].20th International Conferenceon Pattern Recognition(ICPR),2010:4460-4463.
  • 7Mohammadi M R,Fatemizadeh E,Mahoor M H.PCA-baseddictionary building for accurate facial expression recognitionvia sparse representation[J].Journal of Visual Communicationand Image,2014,25(5):1082-1092.
  • 8Haris B C,Sinha R.Speaker verification using sparse representationover KSVD learned dictionary[C].2012 NationalConference on Communications,2012:1-5.
  • 9Matejka P,Glembek O,Castaldo F,et al.Full-covarianceUBM and heavy-tailed PLDA in i-vector speaker verification[C].IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2011:4828-4831.
  • 10Scholkopf B.Platt J.Hofmann T.Sparse representation forsignal classification[C].Proceedings of the 2006 Conferenceon Advances in Neural Information ProcessingSystems.2007:609-616.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部