期刊文献+

超稀疏三元循环测量矩阵的设计 被引量:1

Super-sparse tri-value circulant measurement matrices design
原文传递
导出
摘要 在伯努利循环矩阵的基础上,对其独立元素中随机地引入零元,形成超稀疏三元循环矩阵,与伯努利-循环矩阵相比,其随机独立变元个数和矩阵非零元数目显著减少,从而有利于信息的传输和存储.数值实验结果表明:提出的测量矩阵重建效果略优于伯努利矩阵和伯努利循环矩阵的重建效果,并在绝大多数情形下重建时间可以降低到原来的10%~40%,加快了后端信号重建的速度,有利于压缩感知理论的实用化. Zero elements were introduced into Bernoulli circulant matrices to form sparse tri-value cir-culant matrices with non-zeros elements randomly located .In contrast to Bernoulli circulant matrices , the numbers of random independent variables and non-zero elements can be reduced significantly , which is conducive to data transmission and storage .Numerical results show that the reconstructions of sparse tri-value circulant measurement matrices with random pitch are slightly better than Bernoulli and Bernoulli circulant matrices .In most cases ,the reconstruction time is only about 10% ~40% of the reconstruction time of original Bernoulli and Bernoulli circulant matrices ,w hich can greatly accel-erate the speed of the back-end signal reconstruction and is conducive to practical compressed sensing theory .
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第10期37-41,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 NSFC-广东联合基金资助项目(U1201255) 国家自然科学基金资助项目(61201396 61301296 61377006) 安徽大学博士科研启动经费资助项目(33190218)
关键词 香农采样定理 奈奎斯特率 压缩感知 测量矩阵 确定性测量 稀疏三元循环矩阵 compressed sensing Shannon sampling theorem Nyquist rate measurement matrices deterministic measurement sparse tri-value circulant matrices
  • 相关文献

参考文献3

  • 1Emmanuel J.Candès,Justin K.Romberg,TerenceTao.Stable signal recovery from incomplete and inaccurate measurements[J].Comm Pure Appl Math.2006(8)
  • 2Ronald A. DeVore.Deterministic constructions of compressed sensing matrices[J].Journal of Complexity.2007(4)
  • 3杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148. 被引量:121

二级参考文献31

  • 1D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306.
  • 2M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598.
  • 3I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457.
  • 4T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274.
  • 5A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161.
  • 6E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509.
  • 7E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308.
  • 8S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415.
  • 9E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215.
  • 10S J Kim, K Koh, M Lustig, S Boyd, D Gorinevsky. A interiorpoint method for large-scale ly-regularized least-squares problems with applications in signal processing and statistics[J]. Journal of Machine Learning Research, 2007,7 ( 8 ) : 1519 - 1555.

共引文献123

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部