期刊文献+

基于多视角特征点匹配的室外目标定位 被引量:3

Outdoor object localization based on multiple views of feature points matching
原文传递
导出
摘要 受室外大范围场景中景物多样性和复杂性的影响,移动机器人在进行目标检测与定位时,运动视角的改变往往导致定位成功率下降.针对此提出一种基于多视角特征点匹配的方法进行室外目标定位.该方法首先获取图像的SURF特征进行匹配,然后结合FLANN和KNN算法滤除错误匹配点,有效地提升了匹配质量,节省了运算时间.通过对不同视角下景物模板的匹配判断,经透视变换映射出目标物体,最终实现目标定位.以校园场景景物为定位目标进行实验.结果表明该方法有效提升了单视角目标定位的成功率,具有较好实时性. Because of diversity and complexity of objects in large-scale outdoor scene,change of views always leads to the decline of success while mobile robot is detecting and locating objects.To deal with this problem,an outdoor object locating method based on multiple views of feature points matc-hing was proposed.SURF was employed to describe and match the character.Then the FLANN and ANN algorithm were applied to filter error matching points,which could effectively improve the quali-ty of matching and save the computation time.Finally the target object was mapped out through per-spective transformation,by template matching under different angles of view.Experiment results demonstrate that this approach has higher classification accuracy and better real-time performance.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第S1期241-244 249,249,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61175093) 浙江省自然科学基金资助项目(LQ14F030012)
关键词 SURF特征 匹配算法 多视角模板 透视变换 目标定位 SURF feature matching algorithm multiple views template perspective transformation object localization
  • 相关文献

参考文献8

  • 1T.Liu,A.W.Moore,A.Gray,K.Yang.An investigation of practical approximate nearest neighbor algorithms. Advances in Neural Information Processing Systems . 2004
  • 2Muja M,Lowe D.Fast approximate nearest neighborswith automatic algorithm configuration. 4th Inter-national Conference on Computer Vision Theory and Ap-plications . 2009
  • 3Yan Y,Xia H.An improved matching algorithm for feature points matching. IEEE International Conference on Signal Processing,Communications and Computing . 2014
  • 4Liu S,Zhao L,Li J.Th SIFT features matching for spherical panoramic images. IEEE International Conference on Control and Automation . 2014
  • 5Qin Y,Xu H.Image feature points matching via improved ORB. IEEE International Conference on Progress in Informatics and Computing . 2014
  • 6Liu Z,Wang Y,Jing Y.A robust feature point matching method for dynamic aerial image registration. Proceedings of International Symposium on ParallelArchitectures,Algorithms and Programming . 2014
  • 7Viksten F,Johansson B,Moe A.Comparison of local image descriptors for full 6degree-of-freedom pose estimation. IEEE International Conference on Robotics and Automation . 2009
  • 8Lin Y,Wang J.Research on text classification based on SVM-KNN. IEEE International Conference on Software Engineering and Service Sciences . 2014

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部