期刊文献+

基于MVSVM和超像素的可通行区域检测方法 被引量:1

Traversable region detection method based on MVSVM and superpixels
原文传递
导出
摘要 针对地面智能机器人的可通行区域检测问题,提出一种基于MVSVM和超像素的可通行区域检测方法.利用超像素块作为特征窗口,进行视觉特征的提取,解决了基于矩形块作为特征窗口一大缺陷,即同一特征窗口可能存在多个目标的问题.通过引入超像素,在像素级的尺度上,可通行区域漏检和误检率相对于矩形特征窗口方法大大降低.同时通过采用MVSVM作为分类器,解决了传统的单平面SVM分类器在大规模分类问题中存在的需要较高内存和计算代价以及无法解决例如异或问题等复杂分类问题.在野外实际环境下的实验表明:本方法在可通行区域检测准确率上较以往方法有大幅度提高,能够较好地完成复杂场景下的可通行区域检测. In order to detect the traversable region for ground intelligent robot,a traversable region detection method based on multi-weight-vector projection support vector machine(MVSVM)and superpixels was proposed.Superpixels were used as patches to extract the appearance-based features.The superpixel patches could overcome the disadvantage of the fixed-sized patches which contained more than one important object in one patch.By introducing superpixels,the FP and FN in traversable region detection could be greatly reduced in the pixel-level compared with the fixed-sized patches based methods.Meanwhile,using MVSVM as the classifier solved the problems such as high memory demand,high computational cost and XOR problem existed in the traditional single plane SVM classifier in large-scale classification.The experiments in actual complex wild environment demonstrate that the proposed method can obtain much higher accuracy than the methods used before on the traversable region detection.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第S1期245-249,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金面上资助项目(61371040) 国家自然科学基金资助项目(61305134)
关键词 可通行区域检测 简单线性迭代聚类算法 超像素 多权向量投影支持向量机 地面智能机器人 traversable region detection simple linear iterative clustering algorithm superpixel MVSVM ground intelligent robot
  • 相关文献

参考文献3

  • 1Thorpe, Charles,Hebert, Martial H.,Kanade, Takeo,Shafer, Steven A.VISION AND NAVIGATION FOR THE CARNEGIE-MELLON NAVLAB. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1988
  • 2Castafio R,,Manduchi R,Fox J.Classification experiments on real-world textures. 3rd Workshop on Empirical Evaluation Methods in Computer Vision . 2001
  • 3Levinshtein, Alex,Stere, Adrian,Kutulakos, Kiriakos N.,Fleet, David J.,Dickinson, Sven J.,Siddiqi, Kaleem.TurboPixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2009

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部