摘要
为解决未知环境中小型无人机自主飞行问题,将SLAM算法从地面机器人的二维环境扩展到小型无人机的三维环境.首先,建立了小型无人机的SLAM算法数学模型,得到其非线性状态方程;然后,将小型无人机的SLAM问题分解成路径估计与环境地标估计两部分,分别采用粒子滤波器和扩展卡尔曼滤波器进行估计,提出了一种小型无人机的FastSLAM算法;最后,分别采用扩展卡尔曼滤波和FastSLAM算法进行仿真实验,仿真结果表明FastSLAM算法具有更好的定位精度.
In order to solve the problem of autonomous flight of the small unmanned aerial vehicle(SUAV)in unknown environment,simultaneous localization and mapping(SLAM)algorithm was expanded from two-dimensional environment of the ground robot to three-dimensional environment of SUAV.First,the mathematic model of SUAV SLAM algorithm was built to obtain the nonlinear state equation of SUAV.Second,the SLAM problem of SUAV was decomposed into the estimation over path using aparticle filter and the estimations over landmarks using extended Kalman filters for the purpose of designing a FastSLAM algorithm for SUAV.Finally,simulation researches respectively based on extended Kalman filter(EKF)and FastSLAM algorithm were carried out on SUAV.Results show that FastSLAM algorithm has better performance in location accuracy than EKF algorithm.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2015年第S1期420-423 427,427,共5页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
江苏省科技支撑计划资助项目(BE2014712
BE2010190)
关键词
同步定位与地图构建
小型无人机
三维
FASTSLAM算法
扩展卡尔曼滤波器
simultaneous localization and mapping(SLAM)
small unmanned aerial vehicle(SUAV)
three-dimensional
FastSLAM algorithm
extended Kalman filter(EKF)