期刊文献+

巡检图像的改进密度空间聚类分割算法 被引量:3

An improved density space clustering for inspection image segmentation algorithm
原文传递
导出
摘要 采用一种改进密度空间聚类算法进行巡检图像分割,算法采用简单线性迭代聚类(SLIC)进行预处理,有效降低了内存消耗并提高了运行效率,同时有效改善了图像中目标边界作为背景来处理的问题;算法采用斜交空间距离作为距离度量,充分考虑变量间的相关性,改善了高维聚类不准确的问题.改进算法与DBSCAN对比实验表明:改进算法的聚类结果能有效分离目标和背景,保持边缘完整和连续,运行效率与聚类准确性有很大的改善,可以对巡检图像进行更有效的分割. An improved density clustering image segmentation algorithm was mentioned in this paper. Through pre-processing by simple linear iterative clustering (SLIC),this algorithm had much better efficiency and made better use of memory.And the border of the targets in the image was more prop-erly processed.The algorithm improved the precision of the high-dimensional clustering by spatial dis-tance measure and considering the relation of variables.Compared with DBSCAN,the new algorithm improves the accuracy of recognizing the target from image′s background and keeps intact of the im-age.And both of the algorithm efficiency and clustering accuracy are improved and get a better result than the traditional way.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第S1期473-476,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金青年基金资助项目(61105083) 新世纪优秀人才支持计划资助项目(NCET-11-0634) 北京市共建项目(GJ2013005)
关键词 巡检图像 聚类 密度空间 简单线性迭代聚类(SLIC) 像素块 距离度量 inspection image clustering density space simple linear iterative clustering(SLIC) pixel regions distance measure
  • 相关文献

参考文献5

  • 1Shi J,Malik J.Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 2Radhakrishna Achanta,Appu Shaji,Kevin Smith.SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2012
  • 3Makrogiannis, Sokratis,Economou, George,Fotopoulos, Spiros.A region dissimilarity relation that combines feature-space and spatial information for color image segmentation. IEEE Transactions on Systems Man and Cybernetics . 2005
  • 4Ester M,Kriegel H P,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[].Proceeding of the Second International Conference on Knowledge Discovery and Data Mining (KDD ).1996
  • 5Alireza Rezvanifar,Mohammadali Khosravifard.Including the size of regions in image segmentation by region-based graph. IEEE Transactions on Image Processing . 2014

共引文献10

同被引文献24

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部