期刊文献+

对偶树复小波在脑电消噪中的应用 被引量:2

Application of dual-tree complex wavelet transform in EEG denoising
原文传递
导出
摘要 为解决脑电去噪过程中离散小波带来的信息丢失与频率混叠问题,提出了一种新型对偶树复小波去噪方法.用对偶树复小波对输入脑电信号(EEG)进行多层分解,得到实树部分与虚树部分,分别对实树部与虚树部各子代小波系数进行小波中值阈值处理,再逆变换得到去噪小波.仿真结果表明:该方法可以比传统离散小波去噪方法获得更好的信噪比与均方误差,因此更适合于处理微弱的脑电信号. To solve information loss and frequency aliasing by discrete wavelet transform in the process of electroencephalogram (EEG)denoising,a new EEG signal denoising algorithm was pro-posed,which was based on dual-tree complex wavelet transform.The dual-tree complex wavelet transform was used to conduct a multilayered decomposition on the EEG inputted,so the real tree and the imaginary tree could be obtained,and the median threshold function was used to process the off-spring wavelet coefficients of the real tree and the imaginary tree,then the denoised wavelet was ob-tained by the method of inverse transformation.Simulation results reveal that the SNR and mean square error (MSE)of the proposed method are better than those of traditional discrete wavelet de-noising method,and the proposed method is more suitable for processing the weak EEG signal.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第S1期541-544,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61172134) 浙江省国际科技合作项目(2013C24016)
关键词 对偶树复小波 频率混叠 中值 阈值去噪 信噪比 dual-tree complex wavelet frequency aliasing median threshold denosing SNR(signal noise ratio)
  • 相关文献

参考文献2

  • 1Kingsbury NG.The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters. Proceedings of 8th IEEE Digital Signal Processing Workshop . 1998
  • 2Wang Haijiang,Yang Qinke,Yao Zhihong,et al.Rational-dilation wavelet transform with translation invariance. Journal of Food,Agriculture&Environment; . 2013

共引文献1

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部