期刊文献+

基于核问题的果蝇优化算法求解多维背包问题 被引量:5

Core-based fruit fly optimization algorithm for solving multidimensional knapsack problem
原文传递
导出
摘要 针对多维背包问题(MKP)维度高、约束强的特点,提出了一种基于核问题的果蝇优化算法(CBFOA).该算法通过求解MKP的线性规划松弛问题(LPR-MKP)的对偶问题得到MKP效用比,并运用核问题降低问题规模;果蝇的生成采用的二级结构和时变的搜索步距有利于前期快速寻优和后期精确搜索,采用的修复补偿策略、一级果蝇交流以及视觉搜索中的突跳机制以提高求解质量.通过标准测试集的测试和算法性能的对比,结果表明CBFOA对于MKP有较强的搜索能力. A core-based fruit fly optimization algorithm (CBFOA) was proposed for solving multidimensional knapsack problem (MKP),which was characterized as high dimension and strong constraint.By solving the dual problem of the linear programming relaxion of MKP,a pseudo-utility ratio was attained.The core concept was applied to reduce the problem scale.The two-level structure was also employed to widen the search range.Simultaneously,the time varying searching step was employed to balance the searching speed and quality.A repair operator and communication strategy between flies of first level,as well as the mutation mechanism in the visual search were used to improve the quantity of solution.The test experiments conducted on the standard test set and algorithm comparison demonstrates that CBFOA has a strong search capability for MKP.
作者 张清勇 钱浩 雷德明 ZHANG Qingyong;QIAN Hao;LEI Deming(School of Automation,Wuhan University of Technology,Wuhan 430070,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第2期92-97,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61573264 71471151) 大学生创新创业训练计划资助项目(20171049711006)
关键词 多维背包问题 果蝇优化算法 核问题 突跳机制 二级结构 multidimensional knapsack problem fruit fly optimization algorithm core problem mutation strategy two-levelstructure
  • 相关文献

参考文献4

二级参考文献86

  • 1金锋,宋士吉,吴澄.一类基于FSP问题Block性质的快速TS算法[J].控制与决策,2007,22(3):247-251. 被引量:6
  • 2王凌.车问调度及其遗传算法[M].北京:清华大学出版社,2003:1-5.
  • 3GAREY M R, JOHNSON D S, SETHY R. The complexity of flow- shop and job-shop scheduling [J]. Mathematics of Operations Re- search, 1976, 1(2): 117- 129.
  • 4PINEDO M L. Scheduling: Theory, Algorithms, and Systems [M]. Berlin: Springer, 2012.
  • 5WANG L, ZHENG D Z. An effective hybrid heuristic for flow-shop scheduling [J]. International Journal Advanced Manufacturing Tech- nology, 2003, 21(1): 38- 44.
  • 6OSMAN I H, POTTS C N. Simulated annealing for permutation flow- shop scheduling [J]. Omega, 1989, 17(6): 551 -557.
  • 7NOW1CKI E, SMUTNICKI C. A fast tabu search algorithm for the permutation flow-shop scheduling [J]. European Journal of Opera- tionaIResearch, 1996, 91(1): 160- 175.
  • 8GRABOWSKI J, WODECKI M. A very fast tabu search algorithm for the permutation flow-shop problem with makespan criterion [J]. Computers & Operations Research, 2004, 31(11): 1891 - 1909.
  • 9QIAN B, WANG L, HU R, et al. A hybrid differential evolution for permutation flow-shop scheduling [J]. International Journal Ad- vanced Manufacturing Technology, 2008, 38(7/8): 757 - 777.
  • 10PAN W T. A new fruit fly optimization algorithm: taking the financial distress model as an example [J]. Knowledge-Based Systems, 2012, 26(2): 69 - 74.

共引文献112

同被引文献52

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部