期刊文献+

基于ISA网络的视频人体行为分类识别 被引量:3

Video human behavior recognition based on ISA network model
原文传递
导出
摘要 采用基于独立子空间分析(ISA)模型与神经网络理论形成的ISA深度网络模型特征提取方法,并结合数据预处理方法、K-means聚类方法以及支持向量机(SVM)分类器等实现对视频人体行为的分类识别.将本研究方法应用到Hollywood2人体行为数据集上进行人体行为识别实验,并与其他常用人体行为特征提取和识别方法进行对比,实验结果验证了本研究方法在人体行为分类识别中的有效性. By using the independent subspace analysis (ISA) deep network model feature extraction method,which is based on the ISA model and neural network theory,video classification and identification of human behavior was achieved,in which the data preprocessing methods,K-means clustering methods,and support vector machine (SVM) classifiers were combined.The experiment was conducted on the basis of the Hollywood2 human behavior data set.This experiment was compared with other commonly used human behavior feature extraction and recognition methods.The experimental results validate the effectiveness and advantages of this method in the classification and recognition of human behavior.
作者 钟忺 王灿 卢炎生 钟珞 ZHONG Xian;WANG Can;LU Yansheng;ZHONG Luo(School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430070,China;Transportation Internet of Things Hubei Provincial Key Laboratory,Wuhan University of Technology,Wuhan 430070,China;School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第2期103-108,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61303029) 湖北省自然科学基金资助项目(2015CFB525) 湖北省科技创新团队资助项目(2017CFA012)
关键词 人体行为识别 特征提取 无监督学习 独立子空间分析 独立子空间分析深度网络 human behavior recognition feature extraction unsupervised learning independent subspace analysis independent subspace analysis deep network
  • 相关文献

参考文献3

二级参考文献72

  • 1Hui Fang,Neil Mac Parthaláin,Andrew J. Aubrey,Gary K.L. Tam,Rita Borgo,Paul L. Rosin,Philip W. Grant,David Marshall,Min Chen.Facial expression recognition in dynamic sequences: An integrated approach[J]. Pattern Recognition . 2014 (3)
  • 2Fadi Dornaika,Abdelmalik Moujahid,Bogdan Raducanu.Facial expression recognition using tracked facial actions: Classifier performance analysis[J]. Engineering Applications of Artificial Intelligence . 2013 (1)
  • 3Jaewon Sung,Daijin Kim.Real-time facial expression recognition using STAAM and layered GDA classifier[J]. Image and Vision Computing . 2008 (9)
  • 4Zhao, Guoying,Pietik?inen, Matti.Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2007
  • 5LI Yongqiang,WANG Shangfei,ZHAO Yongping,et al.Simultaneous facial feature tracking and facial expression recognition. IEEE Transactions on Image Processing . 2013
  • 6Le Q V,Zou W Y,Yeung S Y,et al.Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. Proc.of CVPR . 2011
  • 7Wu Tingfan,Bartlett Marian S,Movellan Javier R.Facial Expression Recognition Using Gabor Motion Energy Filters. Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition-Workshops (CVPRW) . 2010
  • 8A Hyvarinen,J Hurri,P Hoyer.Natural Image Statistics. . 2009
  • 9Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 10Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.

共引文献578

同被引文献4

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部