期刊文献+

基于文件相关性的云存储缓存策略

Cloud storage caching strategy based on file correlation
原文传递
导出
摘要 分析云存储数据访问的长尾现象,设计一种基于文件相关性的缓存策略MSU(mostsimilarunit).该策略通过判断文件之间的相关性完成大容量缓存中的文件预取与替换.首先,MSU选择文件的多个访问特征作为计算余弦距离值的输入,从而得到文件相关性的度量.然后,MSU将缓存中的文件作为替换待选集合,将一段时间内从缓存中替换出来的文件作为预取待选集合.当出现文件不命中时,从替换待选集合中取得缺失文件的k-非近邻作为替换文件,从预取待选集合中取得缺失文件的1-近邻作为预取文件.仿真实验表明MSU在命中率和字节命中率方面优于LRU(最近最少使用策略)、ARC(自适应替换策略)和GDS(多参数贪心策略)算法. By considering the long tail distributions of cloud storage data access,a caching strategy named MSU(most similar unit)was designed based on the file correlation.According to the correlation between files,file prefetching and replacement in large-capacity cache could be completed by the strategy.Firstly,some access features were chosen as input for cosine distance by MSU,and the measurement of file correlation was obtained.Then,MSU established two file sets,replacing set that consist of the files in cache and prefetching set that consist of the files which were replaced from cache in a time period.When a file was missed,k-non-nearest neighbor of the missing file from the replacing set was used as replacement file,and 1-nearest neighbor of the missing file from the prefetching set was used as the prefetching file.Results of simulation experiment show that MSU outperforms LRU(least recently used),ARC(adaptive replacement cache)and GDS(greedy dual-size)in hit rate and byte hit rate.
作者 肖芳 周可 XIAO Fang;ZHOU Ke(School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China;Library,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期1-6,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 云存储 缓存策略 命中率 文件相关性 文件预取 cloud storage caching strategy hit rate file correlation file prefetching
  • 相关文献

参考文献2

二级参考文献16

  • 1Liu Wei, Ou Xin-ming, Wu Min,Zheng Wei-min , Shen Meiming. A distributed naming mechanism in scalable cluster file system[C]. In z Proceeding of the Fourth International Conference on High Performance Computing in Asia-Pacific Region, Vol. I,Beijing, P.R. China, May 14-17, 2000,:37-41.
  • 2Liu Wei, Zheng Wei-min , Shen Mei-ming, Wu Min, Ou Xinming. Using a cluster file system-TH-CluFS-to construct a scalable cluster system of web servers[C]. InzProceeding of the 3rd Asia Pacific Web Conference(APWeb2000), Xi'an, China, Oct 27-29, 2000, 248-252.
  • 3Michael D Dahlin, Randolph Y Wang, Thomas E Anderson,David A Patterson. Cooperative cachings using remote client memory to improve file system performanceCC]. Proceedings of the First Symposium Operating Systems Design and Implementation, 1994, 267-280.
  • 4Michael D Dahlin, Randolph Y Wang, Thomas E Anderson,David A Patterson. A quantitative analysis of cache policies for scalavle network file system[C]. Proceedings of 1994 SIGMETRICS, May 1994, 150-160.
  • 5Elizabeth Shriver, Christopher Small, Keith A Smith. Why does file system prefetching work? CC3. Proceedings of the USENIX Technical Conference, June, 1999, 6-11.
  • 6Kenichi Kourai, Shigeru Chiba and Takashi Masuda. Operating system support for easy development of distributed file systems CD3. Proceedings of the 10th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS'98),October 1998, 551-554.
  • 7kkdelta.告诉你 Hadoop 是什么[EB/OL]. [2014-06-17]. ht-tp://www. thebigdata. cn/Hadoop/10722. html.
  • 8周敏奇,王晓玲,金澈清,等.Hadoop权威指南(第2版)[M].北京:清华大学出版社,2011:8-20.
  • 9White T. The small files problem [EB/OL], [2009-2-2]. ht-tp:// www. cloudera. com/blog/2009/02/the-small-files-prob-lem.
  • 10Dong Bo,Qiu Jie, Zheng Qing-hua,et al. A novel approach toimproving the efficiency of storing and accessing small files onHadoop: a case study by powerpoint filesIEEE Interna-tional Conference on Services Computing. Miami,Florida,Pisca-taway:IEEE, 2010: 65-72.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部