期刊文献+

复合材料螺旋桨非定常流固耦合特性数值分析 被引量:10

Numerical analysis of unsteady fluid-structure interaction of composite marine propellers
原文传递
导出
摘要 针对船用复合材料螺旋桨在非均匀流中的水弹性问题,采用雷诺平均纳维-斯托克斯方法(RANS)和有限元方法(FEM)分别求解螺旋桨流场和结构场,并结合滑移网格和动网格技术,建立了船用复合材料螺旋桨双向瞬态流固耦合计算方法.以DTMB4381桨为对象,采用ANSYS ACP构建复合材料桨有限元模型,计算了正交各向异性碳纤维复合材料(CFP)桨在均匀流场和非均匀流场中的水动力性能和结构响应.研究表明:CFP桨的流固耦合效应较小,在均匀流中具有与刚性桨基本相当的水动力性能;CFP桨在非均匀流中桨叶结构响应(位移、速度和加速度)在高伴流区域、叶梢和导边区域较大,变化也更为剧烈. Aiming at the hydroelasticity of the composite marine propeller in non-uniform flow,the Reynolds-averaged Navier-Stokes method(RANS)and finite element method(FEM)were used to solve the flow field and structure field of the propeller,respectively.Combined with the slipping mesh technology and dynamic mesh technology,the marine composite propeller bidirectional transient fluid structure interaction(FSI)calculation method was established.The finite element model of the composite propeller was constructed by ANSYS ACP with the geometry of DTMB4381 model propeller.The hydrodynamic performance and structural response of the orthotropic carbon fiber composite propeller(CFP)in uniform flow field and non-uniform flow field were calculated.The results show that CFP presents less FSI effect and almost has the same hydrodynamic performance of the rigid propeller in uniform flow.The structural responses(displacement,velocity and acceleration)of the CFP blade in non-uniform flow are higher at the high wake area,and the places near the blade tip and the leading edge.
作者 李子如 李广辉 何朋朋 贺伟 LI Ziru;LI Guanghui;HE Pengpeng;HE Wei(Key Laboratory of High Performance Ship Technology,Ministry of Education,Wuhan University of Technology,Wuhan430063,China;Departments of Naval Architecture,Wuhan University of Technology,Wuhan430063,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第9期7-13,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 中央高校基本科研业务费专项资金资助项目(2019Ⅲ076GX) 国家自然科学基金资助项目(51609189,51775400)
关键词 复合材料螺旋桨 雷诺平均纳维-斯托克斯方法 有限元方法 流固耦合 非均匀流场 结构响应 composite marine propeller Reynolds-averaged Navier-Stokes method(RANS) finite element method(FEM) fluid-structure interaction non-uniform flow structural response
  • 相关文献

参考文献3

二级参考文献28

  • 1The Propulsion Committee. Final Report and Re- commendations to the 23rd ITTC [C]//Procee- dings of 23rd International Towing Tank Confe- rence. Hambarg: The Propulsion Committee, 2002.
  • 2LIN H, LIN J. Nonlinear hydroelastic behavior of propellers using a finite element method and lifting surface theory [J]. Journal of Marine Science and Technology, 1996,1(2) :114-124.
  • 3YOUNG Y L. Time-dependent hydroelastic analy- sis of cavitating propulsors [J]. Journal of Fluids and Structures, 2007,23 : 269-295.
  • 4KUO J. Analysis of Propeller Blade Dynamic Stresses [D]. Michigan: The University of Michi-gan, 1984.
  • 5MULCAHY N L, PRUSTY B G, GARDINER C P. Hydroelastic tailoring of flexible composite pro- pellers [J]. Ships and Offshore Structures, 2010, 5(4) :359-370.
  • 6Searle T, Chudley J, Short D, et al. The composite advantage[C]//Proceeding of the SNAME Propeller/ Shafting Symposium. Virginia Beach: SNAME, 1994: 1-8.
  • 7Lin H J, Lin J J. Effect of stacking sequence on the hydroelastic behavior of composite propeller blades [C]//Proc of Eleventh International Conference on Composite Materials. Gold Coast: Australian Com- posite Structures Society, 1997: 1-6.
  • 8Abdul M K, Daniel O A, Vinay D, et al. Effects of bend-twist coupling on composite propeller perform- ance [J]. Mechanics of Composite Materials and Structures, 2000, 7(4): 383-401.
  • 9Lee Y J, Lin C C. Regression of the response surface of laminated composite structures [J].Composite Structures, 2003, 62(1).. 91-105.
  • 10Lee Y J, Lin C C. Optimized design of composite propeller[J]. Mechanics of Advanced Materials and Structures, 2004, 11(1): 7-30.

共引文献20

同被引文献90

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部