期刊文献+

基于LSTM的舰船软件运行健康状态预测 被引量:4

Prediction of operational health status of ship software based on LSTM
原文传递
导出
摘要 针对舰船任务系统的复杂环境,综合考虑舰船软件自身性能、外在环境和运行工况等数据的影响,采用长短期记忆网络模型(LSTM)预测软件运行健康状态,并针对样本类别分布不均衡导致的预测效果不佳等问题,提出了一种加权焦点损失函数(WFL).实验结果表明:基于WFL与包含三个隐含层的LSTM模型(LSTM3-WFL)不仅比传统的机器学习算法能够更好地学习到特征在时间维度上的变化规律;而且相较于基于交叉熵损失函数的LSTM模型,该模型更容易学习到样本个数较少的类别信息,并最终在测试集上达到98.2%的准确率与0.947的宏平均F1-Socre值,在舰船软件运行健康状态的预测问题上有很高的应用价值. In view of the complex environment of the ship mission system,the influence of the ship software’s self performane,external environment and operating conditions was considered.The long-short term memory(LSTM)model was used to predict the health status of the software.In order to solve the problem that the bad effect caused by the unbalanced distribution of sample categories,a weighted focal loss(WFL)loss function was proposed.The experimental results show that the variation of features in the time dimension can be better learn by the improved model named LSTM with three hidden layer based on WFL(LSTM3-WFL)than the traditional machine learning algorithm.The model is easier to learn the category information with less sample number rather than the LSTM model based on the cross entropy loss function,and achieves the accuracy of 98.2%and a macro-average F1-Socre of 0.947 on the test set.In general,it has a high application value in prediction of software operational health status.
作者 冯浩 易全政 聂听 胡洋 FENG Hao;YI Quanzheng;NIE Ting;HU Yang(701Research Institute,China Shipbuilding Industry Corporation,Wuhan430064,China;School of Computer Science,Huazhong University of Science and Technology,Wuhan430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第9期25-30,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国防基础科研计划资助项目(JCKY2016207C038)
关键词 舰船任务系统 LSTM模型 状态预测 分布不均衡 WFL损失函数 ship mission system LSTM model status prediction unbalanced distribution WFL loss function
  • 相关文献

参考文献4

二级参考文献31

  • 1顾煜炯,董玉亮,杨昆.基于模糊评判和RCM分析的发电设备状态综合评价[J].中国电机工程学报,2004,24(6):189-194. 被引量:67
  • 2骆思佳,廖瑞金,王有元,刘玲.带变权的电力变压器状态模糊综合评判[J].高电压技术,2007,33(8):106-110. 被引量:60
  • 3Guo Huairui, Mettas A, Sarakakis G, et al.Piecewise NHPP models with maximum likelihood estimation for repair-able systems[C]//RAMS 2010, San Jose, CA, 2010 : 1-7.
  • 4Anna-Mary B M.A study of the musa reliability models[M]. [S.l.] :Univ Maryland, 1980.
  • 5Karunanithi N.Using neural networks in reliability pre- diction[J].IEEE Software, 1992,9(4) :53-59.
  • 6Singh Y, Kumar P.Prediction of software reliability using feed forward neural networks[C]//CISE2010,2010: 1-5.
  • 7Hu Q P, Xie M.Early software reliability prediction with ANN models [C]//PRDC ' 06,2006 : 210-220.
  • 8Khoshgofftaar T M, Szabo R M.Improving neural network predictions of software quality using principal coments analysis[C]//IEEE World Congress on Computational in- telligence, 1994 : 3295-3300.
  • 9Zhang Xuemei, Teng Xiaolin, Pham Hoang.Considering fault removal efficiency in software reliability assessment[J]. IEEE Trans,2003,33( 1 ) : 114-120.
  • 10Karunanithi N.A neural network approach for software reliability growth modeling in the presence of code churn[C]//Software Reliability Engineering 1993, Denver CO, 1993:310-317.

共引文献57

同被引文献29

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部