期刊文献+

基于人工智能的异常地物光谱自适应剔除及分类算法研究 被引量:2

Artificial intelligence based algorithm for using spectrum to adaptively eliminate exceptional data and automatically classify
下载PDF
导出
摘要 针对传统光谱数据预处理与分析的现状,提出一种基于人工智能的光谱异常数据自适应剔除及自动分类算法,通过遗传算法的优化搜索确定马氏距离的阈值,实现异常光谱的自适应剔除,并提出可量化光谱剔除效果的异常一致性指数(ACI)。在此基础上,借助自组织神经网络方法,以各类观测对象的特征光谱作为输入对象,对剔除后的光谱进行自动分类。经过实验验证,算法取得了较好的剔除效果(ACI达到86%以上)和分类效果(总体分类精度达到94%),较好地实现了异常光谱剔除和光谱分类的自动化处理。 The spectral data measured from spectral measurements are easily affected by human,environmental,equipment and other factors leading to the abnormal spectral characteristics and impacting analyses especially in spectral measurements in the fields.According to the situations of traditional spectral data in preprocessing and analysis,a novel algorithm used for abnormal data excluding adaptively and spectral data classifying automatically based on artificial intelligence was established.The Mahalanobis distance threshold by genetic algorithm searching was determined to exclude abnormal spectral data adaptively and to quantify the effect of excluding abnormal spectral consistency index(ACI).With the self-organizing neural network,spectral characteristics of various types of observing objects were used as input and classified automatically after removing the abnormal.The results showed that the algorithm achieved good excluding(ACI more than 86%)and classification(overall classification accuracy of 94%).It can be used to well automate the handling of excluding spectrum and spectral classification.
出处 《华中农业大学学报》 CAS CSCD 北大核心 2014年第5期135-140,共6页 Journal of Huazhong Agricultural University
基金 国家自然科学基金项目(41201364) 中央高校基本科研业务费专项(2011QC040) 湖北省自然科学基金项目(2010CDB099) 国家大学生创新训练项目(201310504002)
关键词 人工智能 遗传算法 马氏距离 自组织神经网络 光谱预处理 artificial intelligence genetic algorithm Mahalanobis distance self-organizing neural network spectral preprocessing
  • 相关文献

参考文献8

二级参考文献64

共引文献311

同被引文献31

  • 1陈莉,焦李成.基于自适应聚类的数据预处理算法I[J].计算机应用与软件,2005,22(3):28-29. 被引量:9
  • 2刘有延,罗荫权.热释光方法在古陶瓷鉴定中的应用[J].物理,2006,35(5):438-442. 被引量:8
  • 3ZHANG J, JIANG Z, WANG C, et al. Modeling and predic- tion of COz exchange response to environment for small sample size in cucumber[ J]. Computers & Electronics in Agriculture, 2014, 108:39-45.
  • 4HEIP C H R, HERMAN P M J, SOETAERT K. Data pro- cessing, evaluation and analysis[J]. Introduction to the Study of Meiofauna, 1988 : 197 -231.
  • 5SOLODKIY D A, KISTOVICH A V. Modified shift algorithm for processing measured data [ J ]. Measurement Techniques, 2015, 57 ( 11 ) : 1287 - 1294.
  • 6LING F L, WANG Q M, WANG X Q. Identification of rice crop using envisat ASAR in Fuzhou, Fujian province, China [ EB/OL]. (2005-O6-27) [ 2015-10-05 ]. http://earth, eo. esa. int/dragon/symp2005/proceedings/papers/s7 5_lin. pdf.
  • 7ZHANG D, XIE F, WANG D, et al. Cluster analysis based on bipartite network [ J ]. Mathematical Problems in Engineer- ing, 2014, 103(1): 154-181.
  • 8ZHOU H B, GAO J T. Automatic method for determining cluster number based on silhouette coefficient[ J]. Advanced Materials Research, 2014, 951 : 227 - 230.
  • 9GUMBELL E J. Statistics of extremes [ J ]. Applied Ocean Research, 1958, 43 ( 1 ) : 1 - 30.
  • 10EASON G, NOBLE B, SNEDDON I N. On certain integrals of Lipschitz-Hankel type involving products of bessel func- tions [ J]. Philosophical Transactions of the Royal Society of London, 1955, 247(935) :529 -551.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部