期刊文献+

演化曲线自适应驱动的图像分割水平集模型研究

A level-set model for image segmentation with adaptively driven evolutional curve
下载PDF
导出
摘要 利用图像梯度和几何曲率等信息可以准确定位分割图像的边缘.基于此,本文在对图像分割典型变分模型有效性及所存在问题分析和讨论的基础上,提出了一种演化曲线自适应驱动的图像分割水平集模型.模型通过调整演化曲线长度项和面积项的权重函数,使演化曲线能够根据图像当前的状态自适应的调整演化幅度和方向,不仅提高了图像分割的准确度,还大大缩减了图像分割时间;模型在利用图像局部区域信息的同时,也利用全局化的正则函数来兼顾模型能量泛函的全局性,使模型有了对异质区域边界的捕捉能力.经试验验证文章所提出的新模型有效可靠. Image segmentation model based on partial differential equation is widely concerned,because it can accurately locate the edge of object by directly using images geometric information such as gradient,curvature,and etc.In this study,we first discuss the effectiveness and disadvantages of state-of-the-art variational models for image segmentation.Based on our analysis,we subsequently propose a novel level-set model for image segmentation with adaptively driven evolutional curve.The features of the proposed model are as follows.According to current state of the image,the evolutional curve is able to adaptively adjust evolution amplitude and direction by introducing a weighting function of length and area terms.This both improves segmentation accuracy and reduces time to obtain ideal segmentation results,While depending on the local image information,aglobal regular function is employed to balance the global feature of energy functional so as to enhance the models ability to capture edges of heterogeneous area.Experimental results verify the effectiveness of the proposed model.
作者 宋凌怡
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第2期195-200,205,共7页 Journal of Central China Normal University:Natural Sciences
关键词 图像分割 演化曲线 自适应权重函数 水平集函数 能量泛函 image segmentation evolution curve adaptive weighting function level set function energy function
  • 相关文献

参考文献12

  • 1Osher S,Fedkiw R.Level Set Methods And Dynamic Implicit Surface. . 2012
  • 2Ziou D,Tabbone S.Edge detection techniques-an overview. International Journal of Pattern Recognition and Image Analysis . 2008
  • 3A. Tsai,A. Yezzi,Jr.,A. S. Willsky.Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing . 2001
  • 4Li Chunming,Kao Chiuyen,Gore J,et al.Implicit activecontours driven by local binary fitting energy. Proceedingsof IEEE Conference on Computer Vision and Pattern Recognition . 2007
  • 5Hong-Kai Zhao,T. Chan,B. Merriman,S. Osher.A Variational Level Set Approach to Multiphase Motion[J]. Journal of Computational Physics . 1996 (1)
  • 6Michael Kass,Andrew Witkin,Demetri Terzopoulos.Snakes: Active contour models[J]. International Journal of Computer Vision . 1988 (4)
  • 7Luminita A. Vese,Tony F. Chan.A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model[J]. International Journal of Computer Vision . 2002 (3)
  • 8Qi Ge,Liang Xiao,Jun Zhang,Zhi Hui Wei.An improved region-based model with local statistical features for image segmentation[J]. Pattern Recognition . 2011 (4)
  • 9何传江,李梦,詹毅.用于图像分割的自适应距离保持水平集演化[J].软件学报,2008,19(12):3161-3169. 被引量:56
  • 10原野,何传江.LBF活动轮廓模型的改进[J].计算机工程与应用,2009,45(15):177-179. 被引量:19

二级参考文献18

  • 1管海燕,郭建星.常用图像边缘检测算子定位精度对比研究[J].测绘与空间地理信息,2005,28(1):20-24. 被引量:15
  • 2何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 3Du X,Bui T D.A new model for image segmentation [J].IEEE Signal Processing Letters, 2008,15 : 182-185.
  • 4Chan T,Vese L.Aetive contours without edges[J].IEEE Trans on Image Processing, 2001,10(2) : 266-277.
  • 5Caselles V,Morel J M,Sapiro G.Geodesic active contours[J].Int J Comput.Vision, 1997,22: 61-79.
  • 6Vese L,Chan T.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].Int J Comput Vision, 2002,50: 271-293.
  • 7Li C,Kao C,Gore C,et al.Implicit active contours driven by local binary fitting energy[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007,6:17-22.
  • 8Li C,Xu C,Gui C,et al.Level set evolution without re-initialization;a new variational formulation[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,1:430-436.
  • 9章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 10Pratt W K. Digital Image Processing[M]. New York: Wiley,1991.

共引文献475

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部