期刊文献+

复Stiefel流形的商空间

THE QUOTIENT SPACES OF COMPLEX STIEFEL MANIFOLDS
下载PDF
导出
摘要 本文研究了复Stiefel流形关于群S1的商空间的伦型,并且计算了该空间的上同调群.通过纤维化,为这些商空间的上同调找到一组典则的生成元.再利用推广的吴公式,讨论了这些生成元在Sqi下的行为.最后,作为应用,本文对S.Gitler和D.Handel的结果作了部分改进. The thesis is devotes to studying the homotopy of the quotient of complex Stiefel manifolds by the groups S1 and calculating the mod 2 cohomology of the quotients. By fibrations, the author finds a series of canonical generators for the cohomology of these spaces. Making use of general Wu formulae, the actions of Sqi on the generators are discussed. Finally, as an application, the author improves the work that S.Gilter and D. Handel did.
作者 唐炳康
机构地区 浙江大学数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2002年第6期723-736,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.19871076)资助的项目.
关键词 陈类 吴类 Steenrod上同调运算 Steenrod, Cohomology, Chen class, Wu class
  • 相关文献

参考文献21

  • 1Davis, D. M., Immersions of projective spaces: a historical survey [J], Contemp Math.,146(1993), 31-37.
  • 2James, I. M., Euclidan models of projective spaces [J], Bull. London Math. Soc.,3(1971), 257-276.
  • 3Randall, A. D., Some immersion theorems for projective spaces [J], Trans. Amer. Math.Soc., 147(1970), 135-151.
  • 4Adem, J. & Gitler, S., Nonimmersion theorems for real projective spaces [J], Bol. Soc.Mat. Mex., 9(1964), 37-50.
  • 5Lam, K. Y., Sectioning vector bundles over real projective spaces [J], J. Math. Oxford,23(1972), 97-106.
  • 6Milgram, R. J., Immersing projective spaces [J], Annals of Math., 85(1967), 473-482.
  • 7Conner, P. E. & Floyd, E. E., Fixed point free involutions and equivariant maps [J],Bull. Amer. Math. Soc., 66(1960), 416-441.
  • 8Borel, A., La cohomologie mod 2 de certains espaces homogenes [J], Comm. Math.Helv., 27(1953), 165-197.
  • 9Baum, P. & Browder, W., The cohomology of quotients of classical groups [J], Topology,3(1965), 305-336.
  • 10Gitler, S. & Handel, D., The projective Stiefel manifolds Ⅰ [J], Topology, 7(1968), 39-46.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部