期刊文献+

小波基方法在波传问题中的应用

An Application of wavelet-Based Method for Wave Propagation
下载PDF
导出
摘要 基于多尺度分析理论 ,引入哈密顿体系和插值小波变换 ,分别构造了适合于求解复杂域波传问题的快速自适应方法———多尺度辛格式和插值小波配点格式 ,利用小波基的局部性与消失矩等特性改善计算效率 ,并将插值小波应用到波动方程的多尺度反演问题中。讨论了其优缺点并提出几点展望。 Two wavelet based methods, named multi resolution symplectic scheme and interpolating wavelet collocation scheme for fast adaptive solution of wave propagation with general boundary condition are presented by introducing Hamilton system and interpolating subdivision scheme. Computational effectiveness and memory requirement are improved due to the vanishing moments, localization and multi resolution analysis of the wavelet. Then, a new method of multi resolution inversion for wave equation is proposed using interpolating wavelet. Finally, the advantage and disadvantage of these methods are discussed and several prospects are put forward. Numerical results in geophysics exploration show the potential of the methods.
机构地区 清华大学
出处 《应用力学学报》 CAS CSCD 北大核心 2002年第4期26-30,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金资助 (批准号 19872 0 3 7)
关键词 辛格式 插值小波 波传问题 反演 Symplectic, Interpolating wavelet, Wave Propagation, Multi resolution inversion.
  • 相关文献

参考文献13

  • 1Beylkin G. On the representation of operators in bases of compactly supported wavelets[J]. SIAM J. Numer. Anal., 1992, 6(6):1716~1740
  • 2Dahmen W. Wavelet methods for PDEs-some recent developments[J]. J. Comput. App. Math., 2001,128:133~185
  • 3Oleg V, Christopher B. Second-Generation wavelet collocation method for the solution of PDEs[J]. J. Comput. Phys., 2000,165:660~693
  • 4马坚伟,杨慧珠,朱亚平.多尺度有限差分法模拟复杂介质波传问题[J].物理学报,2001,50(8):1415-1420. 被引量:13
  • 5Comincioli V, Naldi G, Scapolla T. A wavelet-based method for numerical solution of nonlinear evolution equations[J]. Appl. Numer. Math., 2000, 33:91~297
  • 6Holmstrom M. Solving hyperbolic PDEs using interpolation wavelets[J]. SIAM J. Sci. Comput., 1999,21:405~420
  • 7马坚伟,徐新生,杨慧珠,钟万勰.平面粘性流体扰动与哈密顿体系[J].应用力学学报,2001,18(4):82-86. 被引量:7
  • 8Hirono I, Lui W W. Time-domain simulation of electromagnetic field using a symplectic integrator[J]. IEEE Trans. Microwave and Guided Wave Lett., 1997,7(9):279~281
  • 9Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J]. J. Comput. Phys., 2000,157,2(20): 473~499
  • 10Li X, Sacchi M D, Ulrych T J. Wavelet transform inversion with prior scale information[J]. Geophysics, 1996, 61(5): 1379~1385

二级参考文献10

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部