期刊文献+

剪切干涉测量中基于Zernike多项式的自适应波前重建 被引量:3

A Zernike Polynomial Based Adaptive Wavefront Reconstruction Method for Lateral Shearing Interferometry
下载PDF
导出
摘要 提出一种剪切干涉测量中被测波前重建的新方法。该方法基于Zernike多项式最小二乘拟合的基本原理 ,通过自适应的方式来确定波前重建表达式。推导出剪切相位 Zernike多项式系数与被测波前 Zernike多项式系数的直接转换矩阵 ,提出了自适应确定多项式级次的新算法 ,给出了相应的波前重建数学模型。对算法进行了计算机模拟 ,并应用于实际剪切干涉测量 。 To solve the problem involved in the shearing interferometry that the wavefronts are not directly reflected in the interferograms, an accurate reconstruction algorithm and procedure will be required. Utilizing the first order derivatives of the surface under measurement, an adaptive algorithm and a reconstruction procedure are proposed for such purpose together with the relevant models. The algorithm is based on the least squares principle and the Zernike polynomials. A direct transformation between the coefficients for the tests wavefront and the ones for the shearing phase is proposed. Computational and experimental tests show the proposed algorithm and the models are effective and accurate.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2003年第3期252-255,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目 (5 9975 0 3 5)
关键词 剪切干涉测量 横向剪切干涉 ZERNIKE多项式 波前重建 自适应算法 shearing interferometry Zernike polynomial wavefront reconstruction adaptive algorithm
  • 相关文献

参考文献5

  • 1[1]Mantravadi M V.Lateral Shearing Interferometer.In:Malacara D,ed. Optical Shop Testing.2nd ed.New York: John Wiley & Sons Inc.,1992
  • 2[2]Okuda S, Nomura T, Kamiya K,et al.High-precision Analysis of a Lateral Shearing Interferogram by Using the Integration Method and Polynomials.Applied Optics, 2000, 39(28):5179~5186
  • 3[3]Malacara D,Devore S L.Interferogram Evalution and Wavefront Fitting.In:Daniel Malacara,ed. Optical Shop Testing.2nd ed.New York:John Wiley & Sons Inc.,1992
  • 4[4]Leibbrandt G W R, Harbers G, Kunst P J.Wave-front Analysis with High Accuracy by Using of a Double-Grating Lateral Shear Interferometer.Applied Optics, 1996, 35(31): 6151~6161
  • 5[5]Greivenkamp J E, Bruning J H.Phase Shifting Interferometry.In:Daniel Malacara,ed. Optical Shop Testing.2nd ed.New York:John Wiley & Sons Inc.,1992

同被引文献27

  • 1莫卫东,高伯龙.数字化技术在玻璃表面检测系统中的应用[J].空军工程大学学报(自然科学版),2000,1(5):1-4. 被引量:4
  • 2曾新,丁剑平,梁佩莹,陈志一.二维剪切干涉波前的最小二乘法重建[J].光学学报,2005,25(3):335-340. 被引量:13
  • 3曾新,梁佩莹,丁剑平.大剪切量干涉的二维波前重建[J].中国激光,2005,32(6):782-786. 被引量:3
  • 4沙定国,全书学,朱秋东,苏大图.光学非球面度的定义及其准确计算[J].光子学报,1995,24(1):91-95. 被引量:16
  • 5M. P. Rimmer, J. C. Wyant. Method for evaluating lateralshearing interferometry [J]. Appl. Opt. , 1974, 13 (3): 623--629.
  • 6H. Schreiber, J. Schwider. Lateral shearing interferometer based on two Ronchi phase gratings in series[J]. Appl. OPt. , 1997, 36(22): 5321--5324.
  • 7S. Okuda, T. Nomura, K. Kamiya et al.. High-precision analysis of a lateral shearing interferogram by use of the integration method and polynomials [J].Appl. Opt., 2000, 39(28): 5179-5186.
  • 8M. Servin, D. Malaeara, J. L. Marroquin. Wave front recovery from two orthogonal sheared interferograms[J].Appl. Opt. , 1996, 35(22) : 4343-4348.
  • 9Bruning J H, Herriott D R, Gallagher J E,et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Appl Oppt, 1974,13( 1 ) :2693 -2703.
  • 10l:owman A E, Greivenkamp J E. Modeling an interferometer for non-null testing of aspheres [ C ] //Proceedings qf SHE : The International Society Jbr Optical Engineerir:g. San Die- go, CA, USA, 1995, 2536: 139-147.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部