摘要
用定性的方法 ,研究了以柱面为首次积分的空间三次系统dxdt=(f1(x) ,f2 (x) ,f3(x) ) ,证明了该系统在每个柱面上至多有 3个周期解 ,并且给出了其存在一个、二个、三个周期解的充分条件 .
By using qualitative methods, space cubic systems with a first integral corresponding to cylinders is studied. It is proved that there are at most three periodic solutions in each cylinder, and some sufficient conditions were also given to guarantee the existence of one, two or three periodic solutions.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2003年第1期41-45,共5页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金项目资助 ( 10 1710 5 6 )