摘要
讨论了在狭义相对论条件下,处于热平衡状态下的理想气体分子速率的分布规律—麦克斯韦速率的分布形式,同时对与速率分布有关的几个量,即归一化常数C(m_o,T)、平均速率v(m_o,T)、方均根速率(v^2(m_o,T))^(1/2)最可几速率v_m(M_o,T)的形式作了详细讨论;另外,对质量不同的气体在相同温度下相应上述各量的值和同种气体在不同温度下上述各量的值作了数值计算。并计算了非相对论和相对论条件下的速度分布函数f(v,m_o,T)、C(m_o,T)、v(m_o,T)(v^2(m_o,T))^(1/2),v_m(m_o,T)的相对差异,分析了上述结果的原因及所含的物理意义。
This paper is devoted to discuss the Maxwell's distribtuion law of speeds of ideal gases in thermal equilibrium, under the condition of special relativity, and that of others which are related to the distribution law of speeds, the normalization constants, the mean values, the root-mean-squre speed, and the most probable speed. Moreover, the values of all the quantities presented formerly are computerlized for ideal gases of different mass with the same temperatures, and for ideal gases of the same mass with different temperatures, and the relatives differences are given under nonrelativity and relativity conditions. Finally, the reasons and meaning of the results are presented.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
1992年第2期200-207,共8页
Journal of University of Electronic Science and Technology of China
关键词
狭义相对论
气体分子
速率分布
Maxwell's distribution law of speeds
special relativity
normalization constants
mean values
root-mean-squre speed
most probable speed