期刊文献+

转铁蛋白基因增强水稻对氧化胁迫与稻瘟病菌的抗性 被引量:14

Ferritin Transgenic Rice Plants are Tolerant to Oxidative Stress and Magnaporthe grisea Infection
下载PDF
导出
摘要 对转豌豆铁蛋白 (pea ferritin,Fer)基因水稻 T1代的 53个株系进行 PCR检测 ,52个株系能扩增出阳性 PCR产物。通过测定光合作用过程中最大光化学通量 (Fv/ Fm 值 )分析了由百草枯处理引起的 T1代水稻叶片的氧化损害。与未转基因水稻相比 ,转Fer基因水稻的叶片对氧化胁迫的耐受能力有不同程度的增强。百草枯处理后转基因植株叶片叶绿素含量与水处理叶片相比没有明显下降 ,而未转基因植株叶片叶绿素含量降低至水处理叶片的 2 0 %左右。选取 9株对氧化胁迫耐受能力较强的水稻进行了 Northernblot分析和子代的稻瘟病抗性测定 ,其中 5株转基因植株 Ferm RNA积累增强。病原菌接种后 T2 代转基因植株的病斑数量明显少于非转基因植株。表明转 PCR analysis on 53 ferritin transgenic plants showed that 52 T 1 transgenic plants existed a pea ferritin gene. Photosynthetic function of the transgenics with 60 μmol/L paraquat treatment was determined by measurement of maximum photochemical efficiency (F v/F m value) and chlorophyll content. Results indicated that transgenic plants exhibited a various degree of tolerance to oxidative stress. Accumulation of mRNA of Fer gene was demonstrated by Northern blot analysis. Results showed the accumulation of mRNA level was elevated in 5 of 9 plants determined. T 2 progeny of transgenic plants showed resistance to Magnaporthe grisea comparing with the non transgenic plants. The average number of lesion in transgenic plants leaves inoculated with Magnaporthe grisea was decreased significantly. These results suggested the overexpression of Fer gene in rice enhanced its resistance to oxidative damage and Magnaporthe grisea infection.
出处 《中国水稻科学》 CAS CSCD 北大核心 2003年第1期85-88,共4页 Chinese Journal of Rice Science
关键词 铁蛋白基因 氧化胁迫 稻瘟病菌 水稻 铁蛋白 抗性 转基因 Oryza sativa ferritin oxidative damage Magnaporthe grisea tolerance
  • 相关文献

参考文献10

  • 1[1]Briat J F, Lobreaux S. Iron transport and storage in plants. Trends in Plant Sci, 1997, (2): 187-193.
  • 2[2]Drakakaki G, Christou P, Stoger E. Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res, 2000,9:445-452.
  • 3[3]Theil E C. Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem, 1987, 56: 289-315.
  • 4[4]Lobréaux S, Briat J F. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J, 1991, 274: 601-606.
  • 5[5]Deák M, Horváth G H, Davletova S, et al. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nature Biotech, 1999, 17: 192-196.
  • 6[6]Goto F, Yoshihara T, Saiki H. Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res, 1998, 7: 173-180.
  • 7[7]Van Wuytswinkel O, Vansuyt G, Grignon N, et al. Iron homestasis alteration in transgenic tabacco overexpressing ferritin. Plant J,1999,17:93-97.
  • 8[8]Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotech, 1999, 17: 282-286.
  • 9[10]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res, 1980, 8: 4321-4325.
  • 10[11]Sambrook J, Fritsh F F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989.

同被引文献210

引证文献14

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部