期刊文献+

二维实值离散Gabor变换时间递归算法的双层并行格型结构实现方法

Two-layer Parallel Lattice Structure of Time-recursive Algorithms for 2-D Real-valued Discrete Gabor Transforms
下载PDF
导出
摘要 本文首先简单回顾了作者曾提出的二维实值离散Gabor变换及其与复值离散Gabor变换的简单关系,然后着重探讨了二维实值离散Gabor变换快速计算问题,提出了二维实值离散Gabor变换系数求解的时间递归算法以及由变换系数重构原图像的块时间递归算法,研究了双层并行格型结构实现两算法的方法,计算复杂性分析及与其它算法的比较证明了双层并行格型结构实现方法在实时处理方面的优越性。 In this paper, the 2-D real-valued discrete Gabor transform (RDGT) proposed in our previous work and its simple relationship with the 2-D complex-valued discrete Gabor transform (CDGT) are briefly reviewed. Time-recursive algorithms for the efficient and fast computation of the 2-D RDGT coefficients and for the fast reconstruction of the original image from the coefficients are developed in this work. Two-layer parallel lattice structures for the implementation of the algorithms are studied. And the computational complexity of the proposed algorithms is compared with that of the existing 2-D CDGT algorithms, which demonstrates that the proposed algorithms are very attractive for parallel implementation for real time image processing.
作者 陶亮 庄镇泉
出处 《电路与系统学报》 CSCD 2002年第4期31-36,共6页 Journal of Circuits and Systems
基金 教育部优秀青年教师资助计划项目 安徽省自然科学基金资助项目(01042210) 安徽省教育厅自然科学重点研究项目
关键词 实值离散GABOR变换 并行格型结构 时间递归算法 图像处理 Real-valued discrete Gabor transforms Parallel lattice structure Time-recursive algorithms.
  • 相关文献

参考文献16

  • 1邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报,2000,28(9):78-84. 被引量:135
  • 2Lu Y H,Joshi S ,Morris J M.Noise Reduction for NMR FID Signal via Gabor Transform [J].IEEE Trans.Biomedical Engineering,1997,44 (6):512-528.
  • 3Sun M,Qian S,et al.Localizing functional activity in the brain through time-frequency analysis and synthesis of the EEG [J].Pro.IEEE,1996,85(9):1302-1311.
  • 4Friedlander B,d Porat B.Detection transient signal by the Gabor representation [J].IEEE Trans.ASSP,1989,37(2):169-180.
  • 5Robert A,Baxter Sar.Image Compression with the Gabor Transform [J].IEEE Trans.Geoscience and Remote Sensing,1999,37(1):574-588.
  • 6Zhang D,Matsuura I,Nomura Y.Visual target-object search using Gabor transform[C].SPIE,1999,3837: 60-66.
  • 7Rotstein H,Raz S.Gabor Transform of Time-varying Systems: Exact Representation and Approximation [J].IEEE Trans.Automatic Control,1999,44(4):729-741.
  • 8Qian S,Chen D.Joint time-frequency analysis [J].IEEE Signal Processing Magazine,1999,6(2):52-67.
  • 9Wang Li-wa,Chen Chin-Tu,Lin Wei-Chung.An efficient algorithm to compute the complete set of discrete Gabor coefficients [J].IEEE Trans.Image Processing.1994,3(1):87-92.
  • 10Gertner I ,Zeevi Y.On the Zak-Gabor representation of image[C].SPIE,Visual Commun.Image Processing,1990,1360:1738-1748.

二级参考文献13

  • 1殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 2Gabor D. Theory of communication[J]. J. Inst. Electr. Eng., 1946, 93(Ⅲ):429-457.
  • 3Daugman J. Complete discrete 2-D Gabor transform by neural networks for image analysis and compression[J]. IEEE Trans Acoust., Speech,Signal Processing, 1988, 36(7): 1169-1179.
  • 4Robert A. Baxter. Sar, Image Compression with the Gabor Transform[J]. IEEE Trans. Geo-science and Remote Sensing, 1999, 37(1):574-588.
  • 5Wang Liwa et al. An efficient algorithm to compute the complete set of discrete Gabor coefficients[J]. IEEE Trans. Image Processing, 1994, 3(1):87-92.
  • 6Bastiaans M. Gabor's expansion of a signal into gaussian elementary signals[J]. Opt. Eng., 1981, 20(4): 594-598.
  • 7Wexler J and Raz S. Discrete Gabor expansions[J]. Signal Processing, 1990, 21(3):207-220.
  • 8Qian S and Chen D. Joint time-frequency analysis[J]. IEEE Signal Processing Magazine, 1999, 6(2):52-67.
  • 9Ayman Ibrahim et al. A Fast Learning Algorithm for Gabor Transformation. IEEE Trans. Image Processing, 1996, 5(1):171-175.
  • 10Tao Liang and Kwan H K. Real Discrete Gabor Expansion for Finite and Infinite Sequences[A]. Proceedings of the 2000 IEEE International Symposium on Circuits and Systems[C], Geneva, Switzerland, May 28-31, 2000, Ⅳ-637-Ⅳ-640.

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部