期刊文献+

自相似业务流复用特性分析 被引量:3

Statistical Multiplexing of Self-similar Traffic
下载PDF
导出
摘要 现有研究将复用的自相似业务流Hurst参数值确定为各个业务流中最大的H参数值,与业务流的其他性质无关,这一结论用于网络设备的设计不利于网络资源的有效利用。本文采用简单近似估算,并用分形布朗运动模型生成自相似业务流,采用小波分析方法估计Hurst 参数值。实验结果表明,由于复用合成业务流的渐近自相似的本质,在可以观测的时间尺度范围内业务流的Hurst参数比这理论预测值小;在一定的序列长度下,复用流的Hurst参数的不仅和最大Hurst参数业务流有关,还受到其它业务流,特别是业务流的方差系数所表现出的短时突发性影响,因此对合成业务流的自相似参数具有重要的影响。 The network performance is influenced by the self-similarity of traffic, which is characterized by Hurst parameter. Self-similarity of multiplexing traffic as FBM (fractal brownian model) is investigated. Because the multiplexing self-similar traffic is asymptotic self-similar in nature, wavelet-based simulation demonstrates that the conventional multiplexing theory is conservative as not to utilize the network resources fully. Furthermore, within the FBM, most of self-similarity is contributed by the large variance traffic. This can be used to develop an effective method to diminish the self-similarity.
出处 《电路与系统学报》 CSCD 2002年第4期46-48,共3页 Journal of Circuits and Systems
关键词 自相似 分形布朗运动 HURST参数 业务流 复用 self-similarity FBM hurst parameter multiplexing of the traffic.
  • 相关文献

参考文献6

  • 1Will E Leland,Muad S Taqqu,Walter Willinger,Daniel V Wilson.On the Self-Similar Nature of Ethernet Traffic (Extended Version)[J].IEEE/ACM,Transactionson Networking,1994-02,2(1): 1-15.
  • 2Vern Paxson.Fast.Approximate Synthesis of Fractional Gaussian Noise for Generating Self-Similar Network [J].Traffic.Computer Communication Review,1997,27(5): 5-18.
  • 3Li Jung-Shian,Adam Wolisz,Radu Popescu-Zeletin.Fast Simulation of Self-Similar Traffic [J].Computer Communication Review,1998: 45-56.
  • 4Boris Tsybakov,Nicolas D Georganas.On Self-Similar Traffic in ATM Queues: Definitions,Overflow Probability Bound,and Cell Delay Distribution [J].IEEE/ACM Transaction On Networking,1997,5: 397-409.
  • 5Arby P,Veitch D.Wavelet analysis of long-range dependent traffic.IEEE Trans.Info.Theory [J],1998,44 (1): 2-15.
  • 6Iikka Norros.On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks [J].IEEE Journal on selected area in communications,1995,13 (6): 953-962.

同被引文献15

  • 1陈丽静,舒勤.无线数据网络中的自相似性[J].微计算机信息,2005,21(1):193-194. 被引量:6
  • 2王珏.BitTorrent下载技术研究[J].科技广场,2005(2):26-27. 被引量:7
  • 3王欣,方滨兴.Hurst参数变化在网络流量异常检测中的应用[J].哈尔滨工业大学学报,2005,37(8):1046-1049. 被引量:14
  • 4W. E. Leland. Tans. on Networking [ J ]. IEEE/ACM 1994,2 (1) :1-15 .
  • 5TaqquMS. TeverovskyV. Onestimating the Intensity of Long-Range Dependent Infinite and Infinite Variance Time Series [ D ]. USA: Preprlnt Boston University, 1996.
  • 6Lawrence Berkeley National Laboratory. The Intemet Traffic Ar-ehive[EB/OL]. [2007-03-20] http:// ira. ee. lbl. gov/index, html.
  • 7P. Reiher, G. Prier, S. Michel, et al. Project D-WARD :DDoS Network Attack Recognition and Defense [ D ]. USA:UCLA, Aug. 2001.
  • 8肯尼斯·法尔科内.分形几何一数学基础及其应用[M].沈阳:东北大学出版社,1991.
  • 9(美)TomArmstrong,(美)RonPatton著,董梁等.ATL开发指南[M]电子工业出版社,2000.
  • 10胡俊,谭献海,胡玉清.基于小波变换的实际网络流量刻画[J].微计算机信息,2008,24(18):86-88. 被引量:3

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部