摘要
研究了核函数主元分析在机械故障模式分类中的应用 .通过计算原始空间的内积核函数实现原始数据空间到高维数据空间的非线性映射 ,再对高维数据作主元分析 ,求取更易于分类的核函数主元 .实验表明 ,核函数主元分析更适于提取故障信号的非线性特征 ,能有效区分不同的故障模式 ,可以应用于机械设备的状态识别 .
Describes a study of kernl Principal Component Analysis in Mechanical faults feature extraction and clessification. By using integral operator kernel functions, the nonlinear principal components in high dimensional feature spaces related to input space by some nonlinear map were computed. Industrial gearbox vibration signals measured from different operating conditions were analyzed using the above method. Experiment results indicate that kernel PCA has good performance in extracting the nonlinear feature from fault signals, and it is able to identify clearly a gearbox operating condition with fatigue spalling or wear compared with the normal condition. It can be applied in machine condition dynamic recognition.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2002年第12期67-70,共4页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家重大基础研究专项基金资助项目 (G19980 2 0 32 0 )
湖北省自然科学基金资助项目 (2 0 0 0J12 5 )
关键词
状态识别
模式分类
特征提取
核函数主元分析
condition recognition
pattern classification
feature extraction
kernel principal component analysis