期刊文献+

基于核函数主元分析的机械设备状态识别 被引量:6

Machine condition recognition based on kernel principal component analysis
下载PDF
导出
摘要 研究了核函数主元分析在机械故障模式分类中的应用 .通过计算原始空间的内积核函数实现原始数据空间到高维数据空间的非线性映射 ,再对高维数据作主元分析 ,求取更易于分类的核函数主元 .实验表明 ,核函数主元分析更适于提取故障信号的非线性特征 ,能有效区分不同的故障模式 ,可以应用于机械设备的状态识别 . Describes a study of kernl Principal Component Analysis in Mechanical faults feature extraction and clessification. By using integral operator kernel functions, the nonlinear principal components in high dimensional feature spaces related to input space by some nonlinear map were computed. Industrial gearbox vibration signals measured from different operating conditions were analyzed using the above method. Experiment results indicate that kernel PCA has good performance in extracting the nonlinear feature from fault signals, and it is able to identify clearly a gearbox operating condition with fatigue spalling or wear compared with the normal condition. It can be applied in machine condition dynamic recognition.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第12期67-70,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重大基础研究专项基金资助项目 (G19980 2 0 32 0 ) 湖北省自然科学基金资助项目 (2 0 0 0J12 5 )
关键词 状态识别 模式分类 特征提取 核函数主元分析 condition recognition pattern classification feature extraction kernel principal component analysis
  • 相关文献

参考文献4

  • 1徐章遂 房立清 王希武 等.故障诊断信息原理及应用[M].北京:国防工业出版社,2000..
  • 2Goodman S, Hunter A. Feature extraction algorithms for pattern classification. IEEE Conference Publication on Artificial Neural Network, 1999. 738-742
  • 3Scholkopf B, Smola A, Muller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10:1299-1319
  • 4Scholkopf B, Smola A, Muller K R. Kernel principal component analysis. In: Scolkopf B, Burger C J C,Smola A J, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge: MIT Press, 1999. 327-352

共引文献2

同被引文献24

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部