期刊文献+

一种新的随动不均匀强(软)化砼本构模型

A New Kinematic Hardening and Softening Model for Concrete
下载PDF
导出
摘要 通过对有关砼材料试验数据的认真分析 ,放弃了均匀强 (软 )化的传统假说 ,提出了一种由四种砼典型破坏试验数据标定材料加载面的实际形状和运动规律的新方法 .与只由一条轴压试验曲线标定的传统方法相比 ,该模型更加充分地利用了试验数据 .所建立的弹塑性随动强 (软 )化模型 ,不仅可以模拟混凝土材料的强化、软化和包氏效应 ,而且具有在考虑材料软化时无须将坐标系转到应变空间中的特点 .通过与试验结果的对比分析证明 ,正交法则可以很好地描述混凝土材料的塑性变形性能 ,所得到的刚度矩阵对称 ,能够节省大量的机时和计算费用 ,便于移植 . On the basis of existing experimental results ,a new kinematic hardening and softening model was proposed for a plain concrete. The loading surface here is calibrated at six control points derived by four types of traditional material test. By abandon the conventional non associated flow rule, the new model can justify the validity and applicability of the associated flow rule and give a good prediction of the behavior not only in proportional loading in tension, shear, and compression test, but also in cyclic loading. Also, this proposed model can predict the softening behavior of concrete with no need to transfer the loading surface from stress space to strain space. The contrast to the test result shows the normal rules well descirbe the performance, and the derived stiffness matrix is symmetrical, so it can easily be transplanted and save much computer time and cost. Good agreement with a wide range of experimental data was observed.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第11期1656-1662,共7页 Journal of Shanghai Jiaotong University
关键词 混凝土 加截面 破坏面 强化 软化 concrete loading surface failure surface hardening(softening) kinematic associated flow rule normality
  • 相关文献

参考文献28

  • 1Cedolin L, Crutzen Y R J, Dei Poli S. Triaxal stress-strain relationship for concrete [J]. Journal of the Engineering Mechanics Division, ASCE,1997,EM3-103(6):423-439.
  • 2Darwin D, Pecknold D A. Inelastic model for cyclic biaxial loading of reinforced concrete [A]. Civil Engineering Studies SRS No 409[C].Urbana: University of Illinois at Urbana-Champaign, 1974.
  • 3Kotsovos M D, Newman J B. Generalized stress-strain relations for concrete[J]. Journal of the Engineering Mechanics Division,1978,EM4-104(8):845-866.
  • 4Küpfer H, Gerstle K H. Behavior of concrete under biaxial stresses[J]. Journal of the Engineering Mechanics Division, ASCE,1973,EM4-99(8):852-866.
  • 5Liu T C Y, Nilson A H, Slate F O. Stress-strain response and fracture of concrete in uniaxial and biaxial compression[J].ACI Journal,1972,69(5):291-295.
  • 6Ottosen N S. Constitutive model for short-time loading of concrete[J]. Journal of the Engineering, Mechanics Division, ASCE,1979,EM1-105(2):127-141.
  • 7Palaniswamy R G. Fracture and Stress-strain Law of Concrete Under Triaxial Compressive Stresses[D]. Chicago: University of Illinois at Chicago Circle, 1973.
  • 8Bazant Z P, Bhat P D. Endochronic theory of inelasticity and failure of concrete [J]. Journal of the Engineering Mechanics Division, ASCE,1976,EM5-102(8):701-722.
  • 9Bazant Z P, Shieh C L. Hysteretic fracturing endochronic theory for concrete[J]. Journal of the Engineering Mechanics Division, ASCE,1980,EM6-106(10):926-950.
  • 10Bazant Z P, Kim S S. Plastic-fracturing theory for concrete[J]. Journal of the Engineering Mechanics Division, ASCE,1979,EM3-105(6):407-428.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部