期刊文献+

并联管组离散模型分析及其关键系数的确定 被引量:2

Analysis of Discrete Model about Manifold Systems and the Measurement of Its Key Coefficients
下载PDF
导出
摘要 流体在并联管组换热器中的流动状况将直接影响到换热器运行的效率和安全性 ,通过离散模型计算方法可得到流动工质在并联管组内的流动特性 .在对离散模型的建立进行详细分析的基础上 ,采用人工神经网络中的 BP算法来确定离散模型中的关键系数 ,即集箱中的静压变化系数和支管进出口的阻力系数 .通过离散模型计算得出的结果与实验数据符合良好 ,说明与简化的连续模型相比 ,离散模型是一种更为符合并联管组流动特性的理论模型 ,同时也表明了用 The status of the flow in manifold systems will directly affect the efficiency and security of an exchanger. With the help of discrete model, the characteristic of the flow in manifold systems will be gotten. After analyzing the establishment of the discrete model, this paper proposed a method applying BP neural networks to measure the key coefficient of the discrete model, namely the static pressure change coefficient and the branch tube's inlet and outlet resistance coefficient. The calculated results of the discrete model accord with the experimental data well. Compared with a simple continual model, the discrete model is true of the characteristic of the flow in manifold systems, and it also shows the availability of the way to use BP neural networks to measure the key coefficient of the discrete model.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第11期1685-1688,共4页 Journal of Shanghai Jiaotong University
关键词 并联管组 换热器 离散模型 神经网络 BP算法 锅炉 Backpropagation Flow of fluids Mathematical models Neural networks
  • 相关文献

参考文献5

  • 1Bajura A. A model for flow distribution in manifolds [J]. Journal of Engineering for Power, 1971, 93(1): 7-12.
  • 2Shen P I. The effect of friction on flow distribution in dividing and combining flow manifolds [J]. Journal of Fluids Engineering, 1992, 114(3): 121-123.
  • 3洛克申,别捷尔松,什瓦尔兹.锅炉机组水力计算标准方法[M].董祖康,王孟浩,李守恒译.北京:电力工业出版社,1981.
  • 4程正兴.数据拟和[M].西安交通大学出版社,1986.62-63.
  • 5叶春,忻建华.基于BP网络的热力系统参数仿真[J].上海交通大学学报,1999,33(3):301-304. 被引量:12

二级参考文献5

共引文献15

同被引文献19

  • 1张润来,方一红.并联管组模型流动均匀性分析[J].天津科技大学学报,2007,22(2):45-48. 被引量:9
  • 2盛敬超.工程流体力学[M].北京:机械工业出版社,1988..
  • 3Todreas N E,Kazimi M S.Nuclear systems.Ⅰ.Thermal hydraulic fundamentals[M].Oxford:Taylor & Francis,1993.
  • 4Jensen J M.Dynamic modeling of thermo-fluid systems with focus on evaporators for refrigeration[D].Denmark:Technical University of Denmark,Department of Mechanical Engineering,2003.
  • 5He X D.A moving-interface model of two-phase flow heat exchanger dynamics for control of vapor compression cycle[J].Heat Pump and Refrigeration Systems Design,Analysis and Applications,ASME,1994,32:205-229.
  • 6He X D.Multivariable control of vapor compression systems[J].HVAC&R Research,1998,4(3):205-230.
  • 7Willatzen M,Pettit N B O L,Ploug-Sφrensen L.A general dynamic simulation model for evaporators and condensers in refrigeration[J].Int J of Refrigeration,1998,21(5-6):398-414.
  • 8Modelica Association.Specification,tutorials[EB/OL].(1998-12-05)[2005-04-04].http://www.modelica.org/.
  • 9Dynasim A B.Dynamic Modeling laboratory[EB/OL].(2004-6-30)[2005-04-04].http://www.dymola.com/.
  • 10Tummescheit H.Design and implementation of object-oriented model libraries using Modelica[D].Sweden:Lund Institute of Technology,Department of Automatic Control,2002.104-120.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部