期刊文献+

点源激励波场下的逆障碍物散射问题 被引量:1

Inverse Obstacle Scattering Problem for Point Source Excited Wave Fields
下载PDF
导出
摘要 研究了从点源激励散射场的近场信息来再现三维障碍物形状的反问题 ,提出了一种非线性最优化求解方法 .该算法只需求解一个不适定的线性系和一个适定的非线性最小化问题 ,而且只需要点源入射场的散射场在某个有限孔径中若干有限个入射和测量点上的近场测量信息 .数值结果表明 ,对较小的波数 ,即使当入射和观测孔径为 π/4立体角时 。 A nonlinear optimization algorithm was proposed for solving the inverse problem of reconstructing the shape of a three dimensional obstacle from the information of the near field measurements for point source fields. The algorithm only needs to solve an ill posed linear system and a well posed minimization problem and requires only the knowledge of the near field measurements of the scattered fields due to point source fields at a finite number of incidence and observation points distributed over a limited aperture. The numerical results show that a reasonable reconstruction is also possible for low wavenumbers even when the incidence and observation aperture is as small as the possible π/4 solid angle.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第11期1703-1708,共6页 Journal of Shanghai Jiaotong University
基金 高等学校全国优秀博士学位论文作者专项基金 上海市教委曙光学者计划资助项目
关键词 反问题 点源散射 有限孔径 逆声散射 inverse problem point source scattering limited aperture
  • 相关文献

参考文献7

  • 1Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory[M].Berlin: Springer, 1998.
  • 2Miao G P, You Y X, Liu Y Z. A numerical method for the shape reconstruction problem in acoustic scattering[J]. Inverse Problems in Engineering, 2000,8(3):229-249.
  • 3You Y X, Miao G P, Liu Y Z. A fast method for acoustic imaging of multiple three-dimensional objects[J]. J Acoust Soc Am, 2000,108(1):31-37.
  • 4Dassios G, Kamvyssas G. Point source excitation in direct and inverse scattering; the soft and the hard small sphere[J]. IMA J Appl Math, 1995,55:67-84.
  • 5You Y X, Miao G P, Liu Y Z. A simple method for visualizing multiple three-dimensional objects from near-field data with point source excitation[J]. ACTA: Acustica, 2001,87(1):1-10.
  • 6Colton D, Kress R. Integral equation methods in scattering theory[M]. New York: Jhon Wily, 1983.
  • 7赵风治.数值优化中的二次逼近法[M].北京:科学出版社,1994..

共引文献6

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部