期刊文献+

激发双参数变形奇偶相干态的反聚束效应 被引量:4

Antibunching Effect of the Excited Two-Parameter Deformed Even and Odd Coherent States
原文传递
导出
摘要 通过在双参数变形奇偶qs相干态上重复作用玻色产生算符,构造了激发奇qs相干态aqs+m|α〉qso和激发偶qs相干态aqs+m|α〉qse,并用数值计算研究了参数m,s和q对反聚束效应的影响.结果显示:(1)当r较小时,对于偶qs相干态,激发可使原来强烈的聚束效应变为强烈的反聚束效应;(2)当q(q≤1)偏离1较远时,随着r2的增大,二阶qs相关函数出现振荡现象(即反聚束效应和聚束效应交替出现),其振幅和周期都随s和q的减小而增大,但不明显受m的调节;(3)当q→1时,二阶相关函数同样出现振荡现象,其振幅和周期不但随着s的减小而增大,而且明显地受到参数m的调节;(4)对于大多数r,二阶qs相关函数对s的敏感度大于对q的敏感度. The excited odd qs-coherent state and excited even qs-coherent state are constructed. The q , s , and m dependences of the antibunching effect are numerically studied. It is shown that for small r , the excited even qs-coherent state exhibits strong antibunching effect but the even qs-coherent state exhibits strong bunching effect; When the q ( q ≤ 1) is far from 1, as r2 increase, the second-order qs-correlation function exhibits oscillating phenomenon (i.e. alternates between antibunching effect and bunching effect) , whose amplitude and period increase as s and q decrease, but are approximately independent of m; When q→1, the second-order qs-correlation function also exhibits oscillating phenomenon, whose amplitude and period not only increase as 5 decreases but also are dependent on m; In general, the second-order qs -correlation function is more sensitive to s than to q .
作者 江俊勤
出处 《高能物理与核物理》 CSCD 北大核心 2003年第1期15-18,共4页 High Energy Physics and Nuclear Physics
基金 广东省教育厅自然科学基金(Z02083)资助~~
关键词 量子代数 双参数变形奇偶相干态 激发态 反聚束效应 qs敏感度 量子光学 原子核物理学 quantum algebra, two-parameter deformed even and odd coherent state, excited state, antibunching effect, qs- sensitive degree
  • 相关文献

参考文献1

二级参考文献2

共引文献20

同被引文献43

  • 1王继锁,刘堂昆,冯健,孙金祚.Roy-型奇偶非线性相干态的位相概率分布[J].物理学报,2004,53(11):3729-3732. 被引量:5
  • 2孙敬文,杨庆怡,丁良恩.减光子压缩真空态的反群聚效应[J].光学学报,2005,25(11):1573-1576. 被引量:7
  • 3汪仲清,段昌奎.q变形对相干态的相位概率分布特性[J].高能物理与核物理,2006,30(3):273-276. 被引量:3
  • 4[1]CARRUTHERS P,NIETO M.Phase and angle variables in quantum mechanics[J].Rev.Mod.Phys.,1968,40(2):411-440.
  • 5[2]SANDERS B C,BARNETT S M,KNIGHT P L.Phase variables and squeezed states[J].Opt.Commun.,1986,58(4):290-294.
  • 6[3]FAN H Y,ZAIDI H R.An exact calculation of the expectation values of the phase operators in squeezed states[J].Opt.Commun.,1988,68(2):143-148.
  • 7[4]PEGG D T,BARNETT S M.Unitary phase operator in quantum mechanics[J].Europhys.Lett.,1988,6(6):483-485.
  • 8[5]PEGG D T,BARNETT S M.Phase properties of the quantized single-mode electromagnetic field[J].Phys.Rev.,1989,A 39(4):1665-1675.
  • 9[6]ARNETT S M,PEGG D T.On the Hermitian optical phase operator[J].J.Mod.Opt.,1989,36(1):7.
  • 10[7]GANTSOG T,TANAS R.Phase properties of pair coherent states[J].Opt.Commun.,1991,82(1-2):145-152.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部