期刊文献+

同位旋非对称核物质性质与扩展的BHF方法(Ⅲ)HVH定理与费米能量

Properties of Isospin Asymmetric Nuclear Matter and Extended BHF Approach (Ⅲ ) HVH Theorem and Fermi Energy
原文传递
导出
摘要 在扩展的同位旋相关的Brueckner—Hartree—Fock理论框架内,在整个同位旋自由度范围内研究了质量算子的空穴线展开中不同等级近似下非对称核物质中Hugenholtz—Van Hove定理的满足程度,并计算了中子和质子的费米能量.结果表明为了使Hugenholtz-Van Hove定理达到令人满意的满足程度,需要同时考虑质量算子中的重排贡献和重正修正,从而指出了基态关联对于非对称核物质中单粒子性质的重要性. Within the isospin dependent Extended Brueckner-Hartree-Fock framework, the Hugenholtz-Van Hove theorem in isospin asymmetric nuclear matter has been investigated and discussed for different orders of approximation made according to the truncation levels in the hole-line expansion of mass operator. The neutron and proton Fermi energies have been calculated. It is found that both the rearrangement contributions and renormalized corrections in the hole-line expansions of the neutron and proton mass operators are necessary for getting a satisfactory fulfillment of the Hugenholtz-Van Hove theorem, indicating the importance of ground state correlations to the single particle properties of asymmetric nuclear matter.
出处 《高能物理与核物理》 CSCD 北大核心 2003年第1期31-35,共5页 High Energy Physics and Nuclear Physics
基金 中国科学院百人计划经费 国家重点基础研究发展规划项目(G2000077400) 中国科学院知识创新工程重要方向性项目(KJCX2-SW-NO2) 国家科技部重大前期研究专项基金(2002CCB00200) 国家自然科学基金重点项目(10235030)资助~~
关键词 同位旋 BHF方法 费米能量 Hugenholtz-Van Hove定理 单粒子性质 非对称核物质 基态关联 Hugenholtz-Van Hove theorem, single particle property, asymmetric nuclear matter, ground state correla-tion
  • 相关文献

参考文献14

  • 1[1]Nazarewicz W, Sherrill B, Tanihata I et al. Nucl. Phys. News, 1996,6:17; Oyamatsu K, Tanihata I, Sugahara Y et al. Nucl. Phys., 1998,A634:3;LI B A, Ko C M, Bauer W. Inter. J. Mod. Phys., 1998,E7: 147
  • 2[2]Cugnon J, Lejeune A, Grange P. Phys. Rev., 1987, C35:861;LI BA. Phys. Rev., 1993, C48:2415
  • 3[3]Pethick C J. Rev. Mod. Phys., 1992, 64: 1133;Bombaci I. Neutron Star Structure and Nuclear Equation of State, in Nuclear Methods and Nuclear Equation of State, Ed. Boldo M, Singapore: World Scientific,1999
  • 4[4]Bombaci I, Lombardo U. Phys. Rev., 1991, C41:1892
  • 5[5]Baldo M, Bombaci I, Giansiracusa G et al. Phys. Rev., 1990, C41:1748
  • 6[6]Hugenholtz N M, Van Hove L. Physica, 1958, 24:363
  • 7[7]ZUO Wei, Lombardo U, LI Zeng-Hua et al. High Energy Phys. and Nucl. Phys., 2002, 26:703(in Chinese)(左维,Lombardo U,李增花等.高能物理与核物理,2002,26:703)
  • 8[8]Wiringa R B, Smith R A, Ainsworth T L. Phys. Rev., 1984, C29:1207
  • 9[9]Jeukenne J P, Lejeune A, Mahaux C. Phys. Rep., 1976, 25:83
  • 10[10]SONG H Q, Baldo M, Giansiracusa G et al. Phys. Rev. Lett., 1998,81:1584

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部