摘要
为获取变切削条件下刀具磨损量 ,对刀具磨损补偿值进行了分析研究 .在合理选择人工神经网络模型的基础上 ,建立了切削条件下铣削磨损监控系统 .依据机床相关切削参数 ,运用了人工神经网络的方法对铣削数据进行处理 ,以实验方法研究了高速钢立铣刀后刀面磨损BP网络对铣刀的磨损量预报 .实验表明 :该模型适用于变切削条件下的铣刀磨损监控 ,可以较准确地监控铣刀的剧烈磨损 .
During automatic manufacturing processes, such as CIMS and FMS, tool wear is the key monitoring to process stability. A lot of analysis and studies have been done for compensation purpose. A milling cutter wear monitoring system has been established by selecting artificial neural network to forecast the wear of high-speed steel cutters back face by BP network. The experiments show that this model is applicable to monitoring the intense wear of milling cutter.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2003年第1期76-80,共5页
Journal of Harbin Institute of Technology
基金
郑州工业高等专科学校学科建设资助项目 ( 199910 )