摘要
对于具有生成多项式(?)(x)的二元Goppa码,令G(x)是能被G(x)整除的最低次数完全平方多项式,则这个Goppa码的最小距离d≥deg(?)(x)+1。本文把这一结果推广到Alternant码上去。
For Goppa code with the generating polynomial G(x), let G(x) be the lowest degree perfect square which is divisible by G(x), then the minimum distance of this Goppa code d≥deg G(x) +1. In the present paper, we generalize this result to Alternant codes.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1992年第4期17-20,56,共5页
Acta Electronica Sinica
关键词
alternant码
最小距离
代数几何码
Alternant Codes, Subfield subcodes Minimum distance, Algebraic-geometric codes