期刊文献+

一种基于参数扰动退火策略的神经网络全局优化新算法 被引量:2

A New Algorithm Based on Hopfield Neural Network with the Parameter Disturbances Simulated Annealing for the Global Optimization
原文传递
导出
摘要 针对非线性全局优化问题 ,提出了一种新算法 :它采用参数扰动策略 ,使 Hopfield神经网络克服局部极值点的吸引 ,同时对参数扰动采用模拟退火算法 ,使扰动逐渐减小 ,直到扰动不能对最优解和最优值产生影响 ,从而得到全局最优解。通过对大量测试函数的仿真计算 ,充分体现了新算法在速度、精度和适应性方面的优势。本文还对算法的收剑性进行了理论分析。 To solve the global optimization of nonlinear problems, this paper proposes a new algorithm, which makes the Hopfield neural network escape from the attraction of the local minimum points by the strategy of parameter disturbances. By using the simulated annealing algorithm, the parameter disturbances will be gradually reduced until it can not affect the network converging to the global optimization solutions. Therefore, we can finally get the global optimization of the objective function. The advantages of the new algorithm are that the present algorithm possesses rapidness, accuracy, and robustness, which are demonstrated by the experimental results of several standard test problems. At the same time, the convergence of the new algorithm is also analyzed.
出处 《系统工程理论方法应用》 2002年第4期314-318,共5页 Systems Engineering Theory·Methodology·Applications
基金 国家自然科学基金资助项目 ( 79970 0 42 )
关键词 参数扰动退火策略 模拟退火算法 HOPFIELD神经网络 非线性全局优化 全局最优解 parameter disturbances simulated annealing Hopfield neural network global optimization
  • 相关文献

参考文献12

  • 1张国平.神经网络优化技术[D].天津:天津大学博士论文,2001.
  • 2Charalambous C, Nonlinear least pth optimization and nonlinear programming[J]. Math. Programming,1977,12:195-225.
  • 3Valafar H, Ersoy O K, Valafar F. Distributed global optimization(DGO)[A]. Proceedings of the 1996 IEEE International Conference on Neural Networks[C]. Washington, DC, USA.1996,1:531a-536.
  • 4Bilbro G L. Fast stochastic global optimization[J]. IEEE Transactions of Systems, Man, and Cybernetics,1994,24(4):684-689.
  • 5Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America,1982,79:2554-2558.
  • 6Tank D W, Hopfield J J. Simple "neural" optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit[J]. IEEE Transactions on Circuits and Systems,1986,58(4):5157-5160.
  • 7Kennedy M P, Chua L O. Neural networks for nonlinear programming[J]. IEEE Transactions on Circuits and Systems,1988,35(5):554-562.
  • 8Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science,1983,220:671-680.
  • 9刘勇 康立山 陈毓屏.非数值并行算法(第二册)--遗传算法[M].北京:科学出版社,1998..
  • 10白成刚.一种基于Bayes方法的优化算法[J].系统工程理论与实践,2001,21(11):80-82. 被引量:4

二级参考文献1

共引文献5

同被引文献16

  • 1杨皎平,高雷阜,赵宏霞.聚类分析在多极值函数优化中的应用[J].辽宁工程技术大学学报(自然科学版),2004,23(4):567-569. 被引量:3
  • 2王凌.智能优化算法及应用[M].北京:清华大学出版社,2001.17-35.
  • 3S Drakunov, U Ozguner, P Dix, et al. ABS control using optimum search via sliding mode[J]. IEEE Trans Control Systems Technology, 1995,3( 1 ) : 79 - 85.
  • 4B Zuo, Y A Hu. Optimizing UAV close formation flight via extremum seeking [ A ]. The 5th WCICA [ C ]. Hangzhou, China: IEEE, 2004,3302 - 3305.
  • 5S Yeung, H H Wang, M Krstic. Experimental apphcation ot extremum seeking on an axial-flow compressor[J]. IEEE Trans Control Systems Technology,2000,8(2) : 300 - 309.
  • 6M Krstic. Toward faster adaptation in extremum seeking control [A]. Proceeding of the 39th IEEE Conference on Decision and Control[C]. USA: IEEE, 1999.4766 - 4771.
  • 7Y Pan, U Ozguner, T Acarman. Stability and performance improvement of extremum seeking control with sliding mode[J]. Internation Journal of Control, 2003,76(9/10) :968 - 985.
  • 8L N Chen, K Aihara. Chaotic simulated annealing by a neural network model with transient chaos[ J ]. Neural Network, 1995, 8(6) :915 - 930.
  • 9K P Wong, S R Meikle, D G Feng, et al. Estimation of input function and kinetic parameters using simulated annealing: application in a flow model [ J ]. IEEE Trans Nuclear Science, 2002,49(3) :707 - 173.
  • 10HOPFIELD JJ.Neurons with graded response have collective computational properties like those of two-state neurons[J].Proceedings of the National Academy of Science,1984,81(10):3088-3092.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部