期刊文献+

神经网络与最小加权距离译码 被引量:6

Neural Networks and Minimum Weighted Distance Decoding
下载PDF
导出
摘要 本文旨在研究神经网络在最小加权距离译码中的应用.首先以逐步推广的方式介绍了若干神经网络模型及其收敛性质,然后研究了最小加权距离译码的性质与应用,最后证明求任一能量函数的最小值点问题等价于某一(n,k)线性码的最小加权距离译码问题,并提出用波尔兹曼机的退火法来作最小加权距离译码. Our main goal is to explore the application of neural networks to minimum weighted distance decoding. At the beginning, we review some models and convergence properties of neural networks step by step. Next, we study properties and applications of the minimum weighted distance decoding. Finally, we prove that finding the global minimum point of any energy function is equivalent to minimum weighted distance decoding in some (n, k) linear code, and propose an algorithm which uses annealing method with Boltzmann machine for minimum weighted distance decoding.
作者 章照止
出处 《电子学报》 EI CAS CSCD 北大核心 1992年第10期1-9,共9页 Acta Electronica Sinica
关键词 神经网络 最小加权距离 译码 Neural network, Minimum weighted distance decoding, Boltzmann machime, Annealing
  • 相关文献

参考文献4

二级参考文献5

共引文献1

同被引文献12

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部