期刊文献+

二项分布——拉普拉斯和离散的高斯——拉普拉斯边缘检测算子的性能 被引量:1

Performances of the Laplacian of Binomial Distribution and the Discrete Laplacian of Gaussian Edge Detection Operators
下载PDF
导出
摘要 本文从空域及频域两方面对二项分布——拉普拉斯(LOB)及离散的高斯——拉普拉斯(DLOG)边缘检测算子进行了分析比较.在两种算子的尺度空间常数很大时,它们的时域和频域特性及对图象进行边缘检测的性能是基本相同的.但当尺度空间常数较小时,从它们在频域中带通特性的中心频率、3分贝带宽及截止频率处的高频衰减性能进行比较可知,LOB算子稍优于离散的LOG算子.故LOB算子可看成是LOG算子的一种离散实现.文中给出了实验结果,证明了分析结果的正确性. This paper presents a performance analysis and comparison between the Laplacian of binomial distribution (LOB) and the discrete Laplacian of Guassian (DLOG) edge detection operators in the space domain and frequency domain. When the scale space constants of the two edge detection operators are large enough, the characteristics in space domain and frequency domain and performances in image edge detection are almost the same. But when the scale space constants are smaller, the conclusion can be made that the performances of LOB operator are little better than that of discrete LOG operator after comparisons of central frequency, 3dB bandwidth and high frequency attenuation rate at cut off frequency in frequency domain. LOB operator may be considered as a discrete realization of LOG operator. The experiments are given to verify the correctness of analysis.
机构地区 上海科技大学
出处 《电子学报》 EI CAS CSCD 北大核心 1992年第11期69-74,共6页 Acta Electronica Sinica
关键词 边缘检测算子 拉普拉斯 图象处理 Edge detection operators, Laplacian operator, Image processing, Computer vision
  • 相关文献

参考文献1

  • 1吴立德,概率论,1979年

同被引文献8

  • 1V Caselles,F Catte,T Coll,et al.A geometric model for actiw, contom,'s in image processing [J].Numer Math, 1993,66( 1 ):1-3 1.
  • 2Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J]. Int J Comput Vison, 1997,22( 1 ):61-79.
  • 3Weickert J.Anisotropic Diffusion in Image Processing [M]. ECMI Series,Teutmer-Verlag, Stuttgart, Germany, 1998.
  • 4IEEE Computer Society Conference on Computer Vision and Pattern Recognitiun, 2005.430-436.
  • 5Li C, Xu C, Gui C,et al. Level set evolution without re- initialization: a new variational formulation:A new varictional fornmlation[C].lEEE Computer society Conference on Compu- ter Vision and putte,'n Reeogni-tion 2005.430-446.
  • 6吴立德.概率论[M].北京:人民教育出版社.1979.
  • 7Li C, Xu C, et al. Fast distance preserving level set evolution for medical image segmentation [C], The 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 2006. ! 26-135.
  • 8冯玉玲,何传江,李梦.不用高斯平滑的边缘活动轮廓模型[J].计算机工程与应用,2010,46(36):192-194. 被引量:10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部