期刊文献+

嵌入局部模型的SOM网络对混沌时间序列预测研究 被引量:5

Prediction of chaotic time series based on self-organizing map embedded local models
下载PDF
导出
摘要 针对混沌时间序列特征空间多变性的特点 ,在 SOM自组织神经网络中嵌入局部线性回归模型 ,用于混沌时间序列的预测。该方法融合了局部线性预测的优点以及 SOM网络数据快速聚类能力、可视化特征识别性质和拓扑保留映射特点 ,既可减少运算时间和存储空间 ,又能适应混沌时间序列的多变特征 ,取得了较高的预测精度。 Anewself-organizingmapmodel with local linear models is presented, which is used to predict chaotic time series. The novel approach fuses linear prediction and capabilities of the SOM which is good at clustering, visualization analysis and topology preservation. The simulation shows that the approach achieves good results that reduce much computation time and large memory requirement, and also it can adapt characteristic variety of chaotic time series throughout the feature space.
出处 《控制与决策》 EI CSCD 北大核心 2003年第1期106-109,共4页 Control and Decision
基金 国防预研基金资助项目 (98J19.3.2 .JB32 0 1)
关键词 SOM网络 混沌时间序列预测 人工神经网络 局部线性回归模型 Locallinearregressionmodel Self-organizingmap Neuralnetworks Time series prediction
  • 相关文献

参考文献8

  • 1[1]Casdagli M. Nonlinear prediction of chaotic time series[J]. Physica D,1989,35:335-356.
  • 2[2]Kugiumtzis D, Lingiarde O C, Christoph-ersen N. Regularizedlocallinearprediction of chaotic time series[J]. Physica D,1998,112:344-360.
  • 3[3]Gencay R, Tung Liu. Nonlinear modeling and prediction with feedforward and recurrent networks[J]. Physica D,1997,108:119-134.
  • 4[4]Deco G, Obradovic D. Decorrelated hebbian learning for clustering and function approximation[J]. Neural Comput,1995,7:338-348.
  • 5[5]Platt J. Learning by combining memorization and gradient descent[J]. Adv Neur Infor Proc Syst,1996.
  • 6[6]Maguire L P,Roche B, Mcginnity T M, et al. Predic-ting a chaotic time series using a fuzzy neural network[J]. Infor Sciences,1998,112:125-136.
  • 7[7]Littmann E, Ritter H. Learning and generalization in cascade network architectures[J]. Neural Comput,1996,8(7):1521-1539.
  • 8[8]LapedesA,Farber R.Nonlinear signal processing using neural networks: Prediction and system modelling[R]. Los Alamos,1987.

同被引文献25

  • 1YINJunsong HUDewen CHENShuang ZHOUZongtan.DSOM:a novel self-organizing model based on NO dynamic diffusing mechanism[J].Science in China(Series F),2005,48(2):247-262. 被引量:2
  • 2吕强,俞金寿.基于粒子群优化的自组织特征映射神经网络及应用[J].控制与决策,2005,20(10):1115-1119. 被引量:12
  • 3张正则 译.飞机费用估算译文集[M].航空工业部科学技术情报研究所,1985..
  • 4Vapnik V N. Statistical Learming Theory[M]. John Wiley, New York.1998.
  • 5Zhu Jia-Yuan, Zhang Heng-xi, Guo Ji-Lian, et al. Data Distributions Automatic Identification Based on SOM and Support Vector Machines[C]. IEEE Proceedings of the First International Conference of Machine Learning and Cybernetics, 2002. 340-344.
  • 6Gencay R, Tung Liu. Nonlinear Modeling and Prediction with Feedforward and Recurrent Networks. Physica D, 1997,108 : 119-134.
  • 7Deco G,Obradovic D. Decorrelated Hebbian Learning for Clustering and Function Approximation. Neural Computation, 1995 (7) :338-348.
  • 8Platt J. Learning by Combining Memorization and Gradient Descent. In Advances in Neural Information Processing Systems, 1996.
  • 9Maguire L P, Roche B, Mcginnity T M, Mcdaid L J. Predicting a Chaotic Time Series Using a Fuzzy Neural Network. Information Sciences, 1998,112:125-136.
  • 10Vapnik V N. Statistical Learning Theory. NewYork, Springer,1998.

引证文献5

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部