摘要
采用RBF CSR方法测定卡伯值 ,CSR方法将从自变量参数矩阵和因变量向量中提取成分 ,循环地构造并扩张Krylov子空间 ,且以此作为源空间 ,运用最小二乘准则解得映射到因变量实空间的线性泛函。整个求解过程包括了最小二乘回归 (LSR)、主成分回归(PCR)、偏最小二乘回归 (PLS)及其他中间回归方法。然后由预报能力的强弱 ,从中确定最佳回归模型。通过实验表明 ,采用该方法测定制浆蒸煮过程卡伯值 ,效果良好。
It is very important to measure Kappa number accurately in batch pulping process. The radial basis function-cyclic subspace regression (RBF-CSR) approach is used for measuring Kappa number. By extracting components from independent variable and dependent variable parameter matrixes, CSR circularly configures and expands Krylov subspace, and ultimately a real function is obtained which is mapped into independent variable real space according to the least square criterion. The whole solving process subsumes LSR, PCR, PLS and other medial regression algorithms. The optimal model is selected from which has the minimum predictive error and the maximum stability. Preferable results are obtained by using RBF-CSR approach for measuring Kappa number in pulping process.
出处
《中国造纸学报》
EI
CAS
CSCD
北大核心
2002年第2期92-96,共5页
Transactions of China Pulp and Paper