摘要
本文研究了最大似然估计量常用迭代公式的收敛性问题.给出了Gauss-Newton迭代公式具有渐近数值稳定性的充分条件.在此基础上,研究了改进的Gauss-Newton迭代公式及其收敛的充分条件.通过实例计算了Weibull分布以及广义线性模型的最大似然估计,取得很好的效果.
Iteration methods and their convergences of the maximum likelihood estimator are discussed in this paper. We study the Gauss-Newton method and give a set of sufficient conditions for the convergence of asymptotic numerical stability. The modified Gauss-Newton method is also studied and the sufficient conditions of the convergence are also presented. Two numerical examples are given to illustrate our results.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1992年第3期81-88,共8页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金
东南大学青年基金
关键词
最大似然估计
迭代法
数值
稳定性
maximum likelihood estimator, iteration method, numerical stability/generalied linear models, asymptotic numerical stability