期刊文献+

径向基函数神经网络在脑电信号建模中的应用 被引量:2

The Application of Radical Base Function Neural Networks in EEG Modeling
下载PDF
导出
摘要 详细介绍了径向基函数神经网络在脑电信号建模中的应用 ,描述了径向基函数神经网络的结构与算法 ,通过与反向传播算法神经网络在脑电建模中的应用进行对比 。 Neural networks have many applications in scientific fields,especially in the non-linear system modeling(such as EEG signal). Back propagation algorithm(BP)and radical base function(RBF)neural networks have strong ability to simulate non-linear functions. So BP and RBF networks are both used in system modeling. In this paper,we introduced the application of RBF networks in EEG signal modeling,and described its architecture,transfer function and training algorithm. Through comparing with BP networks performance,we found that RBF networks needed less time and training steps to achieve better result in modeling a non-linear system, and RBF networks are more suitable for modeling a non-linear system such as EEG.
出处 《山东生物医学工程》 2002年第2期45-47,共3页 Shandong Journal of Biomedical Engineering
关键词 径向基函数 神经网络 脑电信号 建模 应用 Radical base function(RBF) Back propagation algorithm(BP) EEG Non-linear system modeling
  • 相关文献

参考文献4

  • 1林嘉宇,刘荧.用于语音信号非线性建模的RBF神经网络的训练方法及其性能[J].信号处理,2001,17(4):322-328. 被引量:4
  • 2[3]Martin Pottmann,Dale Seborg.Identification of nonlinear process using reciprocal multiquadric functions. J Proc Cont,1992,2(4):189~203
  • 3[5]Chen F C, Khalil H K. Adaptive control of a class of nonlinear discrete-time systems using neural networks. IEEE Transactions on Automatic Control,1995,5(5):791~801
  • 4[6]Asim Roy, Sandeep Govil,and Raymond Miranda. A neural-network learning theory and a polynomial time RBF algorithm. IEEE Trans on neural network,1997,8(6):1301~1313

二级参考文献1

共引文献3

同被引文献23

  • 1丁幼亮,李爱群,缪长青.基于小波包能量谱的结构损伤预警方法研究[J].工程力学,2006,23(8):42-48. 被引量:80
  • 2Leon Cohen.Time-Frequency Analysis:Theory and Application[M].USA:Prentice Hall,1995.
  • 3Hlawatsch.The Wigner distribution-the or yand application in signal processing[M].New York:North Holl and Elsevier Science Publishers,1992.
  • 4Li Yong,Sheng Xun.Apply Wavelet transform to analyse EEG signal.18th Annual International Conference of the IEEE Engineering in Medical and Biology Society.Amsterdam:1996.1007-1008.
  • 5Stam GJ,Jells B,Alhtereekte HAM,et al.Investigation of EEG non-linearity in dementia and Parkinson's disease.Electroencephalography and Clinical Neurophysiology,1995,95:309 -312.
  • 6Pincus SM.Approximate entropy (ApEn) as a complexity measure[J].Chaos,1995,5:110-117.
  • 7Stone JV.Independent component analysis:An introduction[J].Techniques & Applications-TRENDS in Cognitive Sciences,2002,6(2):59 -64.
  • 8Anderson CW,Zlatko Sijercic.Classification of EEG Signals from four Subjects During Five Mental Tasks.Solving Engineering Problems with Neural Networks:Proceedings of the Conference on Engineering.Applications in Neural Network[J].Turku,Finland:Systems Engineering Association,1996,407-414.
  • 9Niedermeyer,Silva. Electroencephalography,basic principle,clini- cal applications and related fields [M].Second edition.Uvbanl: Schwarzerberg, 1987.97-129.
  • 10Li Yong, Sheng Xun. Apply Wavelet transform to analyze EEG signa1,18th Annual International Conference of the IEEE Engineering in Medical and Biology Society.Amsterdam,1996, 1007-1008.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部