期刊文献+

一类规划问题所给最优性必要条件的注记 被引量:5

Annotations of the Necessary Optimality Condition for a Class of Programming Problems
下载PDF
导出
摘要 本文指出了一类规划问题所给最优性必要条件中所存在的问题.对于一些带有附加项(如x^TDx)~2/1,||Sx||p)的单目标规划问题一般都给出了一个类似集合Z°,并以“Z°为空集”作为一个前提条件.本文指出此条件太强.并论证了当只有Z°为空集时,就可推出强最优性必要条件,而不必要求“X°是最优解”. The question of the necessary optimality conditions for a Class of Programming Problems was found out in the paper. Prom the 1970s, A set Z°was defined in a single-objective programming problems of allowing additional types, and, Z°is empty as a premise. But, There was question on it. The paper proves the optimality conditions can been got when Z°is empty, and it isn't neccessary for x°is optimal.
出处 《运筹学学报》 CSCD 北大核心 2002年第4期88-96,共9页 Operations Research Transactions
关键词 分式规划 最优性条件 单目标规划 fractional programming, Optimality conditions, single-objective programming.
  • 相关文献

参考文献6

  • 1B.Mond, A class of nondifferentiable mathematical programming problems J.M,A.A 46169-174(1974).
  • 2B.Mond and M.Schechter, A programming problems with an Lp norm in the objective function J.A.M.S 19(1976), 333-342.
  • 3B.Mond A class of nondifferentiable fractional programming problems L.Z.A.M.M ,58, 337-341(1978).
  • 4A.Singh Nondifferentiable fractional programming problems with Hanson-Mond classes of function J.O.J.A, 49(3)421-431(1986).
  • 5伍小林,陈开周.一类不可微分式规划的最优性讨论[J].应用数学学报,1993,16(4):534-543. 被引量:3
  • 6林锉云,董加礼,多目标优化的方法与理论,1992.8.

二级参考文献2

  • 1C. Singh. Nondifferentiable fractional programming with Hanson-Mond classes of functions[J] 1986,Journal of Optimization Theory and Applications(3):431~447
  • 2Jean-Pierre Crouzeix,Jacques A. Ferland,Siegfried Schaible. Duality in generalized linear fractional programming[J] 1983,Mathematical Programming(3):342~354

共引文献2

同被引文献55

  • 1Das I.. N. , and Nanda S.,Proper efficiency conditions and duality for muhiobjective programming problems involving semilocally invex functions [J], Optimization, 1995, 34:43-51.
  • 2Gomez R. O. , Generalized conivexity in multiobjective progrmming [J],J.M.A,A.,1999, 233:205-220.
  • 3Egudo R. R.,and Hanson M. A., Muhiobjective duality with invexity [J],J. M. A. A. , 1987, 126:469-477.
  • 4Antczak T., A class of B-(p, r)- invex functions and mathematical programming[J],J. M. A. A.,286:187-206.
  • 5Antczak T. , On (p,r)- invexity-type nonlinear programming problems[J],J.M.A.A. , 2001, 264:382-397.
  • 6Antczak T.,(p,r)-invex sets and functions[J],J.M.A.A. ,2001,263:355-379.
  • 7Antczak T.,(p,r)- invexitv in multiobiective prouramminu [J], E. J.O.R. , 2004, 152:72-78.
  • 8Hanson M. A.,On sufficiency of the Kuhn-Tucker conditions [J],J.M. A,A,,1981,80:545-550.
  • 9Martin D. H.,The essence of invexity[J],J.O.T.A.,1991,71:237-253.
  • 10Bector C.R.,and Singh C.,B-vex functions [J],J. O. T. A. , 1991,71:237-253.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部