期刊文献+

关于Pell数列的Ribenboim问题 被引量:2

On Ribenboim's Problem Concerning Pell Sequences
下载PDF
导出
摘要 本文证明了:第一类Pell数列仅有平方类(1,169); In this paper we prove that the Pell sequence of first kind has only the square class (1,169), the Pell sequence of second kind has no square classes.
作者 乐茂华
出处 《数学进展》 CSCD 北大核心 2002年第6期510-516,共7页 Advances in Mathematics(China)
基金 国家自然科学基金(19871073) 广东省自然科学基金(980869) 广东省教育厅自然科学研究项目和"千百十工程"优秀人才培养基金(9901)资助项目.
关键词 Ribenboim问题 LUCAS数列 Pell数列 平方类 数论 Lucas sequence Pell sequence square class
  • 相关文献

参考文献10

  • 1Cohn J H E. Squares in some recurrence sequences. Pacific J. Math., 1972, 41: 61-646.
  • 2Ribenboim P. The Fibonacci numbers and the Arctic Ocean. In: Symposia Gaussiana Conf. A, de Gruyter,1995, 41-83.
  • 3Ribenboim P, McDaniel W L. Square-classes of Lucas sequences. Portug. Math., 1991, 48:469-473.
  • 4乐茂华.方程x^4-Dy^2=1有正整数解的充要条件[J].科学通报,1984,32(22):1407-1407. 被引量:11
  • 5Ljunggren W. Zur Theorie der Gleichung x2 + 1 = Dy4. Avh. Norske Vid. Akad. Oslo, 1942, 1: No.5.
  • 6Chen J-H, Voutier P M. Complete solution of the diophantine equation x2 + 1 = dy4 and a related family of quartic Thue equations. J. Number Theory, 1997, 62: 71-99.
  • 7Ljunggren W. Uber die Gleichung x4 - Dy2 = 1. Arch. Math. Naturv., 1942, 45: Nor.5.
  • 8Hyyro S. Uber die Gleichung axn - byn = z und das Catalansche Problem. Ann. Acad. Sci. Fennicae Ser.A, 1964, 1: 32.
  • 9Le Maohua. On the diophantine equation D1x4 - D2y2 = 1. Acta Arith., 1996, 76: 1-9.
  • 10Mordell L J. Diophantine Equations. London: Academic Press, 1968.

共引文献10

同被引文献18

  • 1[1]Lehmer DL. An Extended Theory of Lucas' Functions[ J ]. Ann. Math, 1930,31: 419 ~ 448.
  • 2[2]Alfted U. On Square Lucas Numbers[J]. Fibonacci Quart,1964,2:11~12.
  • 3[3]Cohn JHE. On Square Fibonacci Numbers[J]. J. London Math. Soc,1964,39:537~541.
  • 4[4]Ko C, Sun Q. On Square Fibonacci Numbers[J]. J. Sichuan University, 1965,11 (2): 11 ~ 18.
  • 5[5]Ljunggren W. On the Diophantine Equation Ax4 - By2 = C ( C = 1,4) [ J ]. Math. Scand, 1967,21:149 ~ 156.
  • 6[6]Ribenboim P, McDaniel WL. The Square Terms in Lucas Sequence[J ]. J. Number Theory, 1996,58:104 ~ 123.
  • 7[8]Rotkiewica A. Applicationsof Jacobi's Symbol to Lehmer's Numbers[J ]. Acta Arith, 1983,62:163 ~ 187.
  • 8[9]Shorey TN, Tijdeman R. Exponential Diophantine Equations[ M ]. Cambridge: Cambridge Univ Press, 1986.
  • 9[10]Ribenboim P, McDaniel WL. Square-classes of Lucas Sequences[J]. Portug. Math, 1991,48:469~473.
  • 10[11]Ribenboim P. The Fibonacci Numbers and the Arctir Ocean. In: Symposia Gaussiana Conf[M]. A, de Gruyter,1995.41~83.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部