期刊文献+

具有偏差变元的三种群食物链系统的全局正周期解的存在性 被引量:12

GLOBAL EXISTENCE OF POSITIVE PERIODIC SOLUTION OF A THREE SPECIES FOOD-CHAIN SYSTEM WITH DEVIATING ARGUMENTS
下载PDF
导出
摘要 利用重合度理论研究一类具有偏差变元的三种群食物链系统的全局正周期解的存 在性.得到了一些新的结果. We inverstigatc the global existence of positive periodic solutions of a three species food-chain system with deviating arguments by using the method of coincidence degree theory. Some new results are obtained.
出处 《数学杂志》 CSCD 北大核心 2003年第1期25-28,共4页 Journal of Mathematics
关键词 偏差变元 三种群食物链系统 全局正周期解 存在性 重合度 food-chain system positive poriodic solution coincidence degree.
  • 相关文献

参考文献1

二级参考文献8

  • 1Li Y.On a Periodic Neutral Delay Lotka-Volterra System. Nonlinear Analysis . 2000
  • 2Zhang Zheng-qiu.Perodic Solution for a Two-Species Nonautonomous Competition Lotka-Volterra Path System with Time Delay. Journal of Mathematical Analysis and Applications . 2002
  • 3Yang Ping-hua,Xu Rui.Persistence and Periodic Solution for Diffusive Prey-Predator System with Functional Response. Journal of Biomaterials Application . 1999
  • 4Song X,Chen L.Persistence and Periodic Orbits for Two-Species Predator-Prey System with Diffusion. Canadian Applied Mathematics Quarterly . 1998
  • 5Song X,Chen L.Persistence and global stability for nonautonomous predator-prey system with diffusionand time delay. Computers and Mathematics With Applications . 1998
  • 6Mawhin J L.Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional conf ser , Math Am Math Soc . 1979
  • 7Gaines R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations. . 1997
  • 8Li Y.Periodic solution of a periodic delay predator-prey system. Proceedings of the American Mathematical Society . 1999

共引文献3

同被引文献67

  • 1陈凤德,史金麟,陈晓星.多滞量捕食模型的正周期解[J].生物数学学报,2005,20(1):51-57. 被引量:3
  • 2曾广钊,孙丽华.非自治阶段结构与时滞捕食模型的持久性和周期解(英文)[J].生物数学学报,2005,20(2):149-156. 被引量:11
  • 3高建国.基于比率的Holling-Tanner系统全局渐近稳定性[J].生物数学学报,2005,20(2):165-168. 被引量:25
  • 4汪东树,王全义.一类具时滞和比率的扩散系统正周期解[J].华侨大学学报(自然科学版),2006,27(4):358-361. 被引量:6
  • 5马知恩.种群生态的数学建模与研究[M].合肥:安徽教育出版社,1994..
  • 6YangPing-hua XuRui.Persistence and periodic solution for diffusive prey—predator system with functional response[J].生物数学学报,1999,14(1):1-6.
  • 7Teng Zhi-dong,Chen Lan-sun.Uniform persistence and existence of strictly positive solutions in nonautonomous LotkaVolterra competitive system with delay[J].Comp.Math.Appl,1999,37:61-71.
  • 8DouJia-wei.Persistence and periodic solution of a system of two competing species with functional response[J].生物数学学报,1997,12(1):15-22.
  • 9Huo Hai-feng,Li Wan-tong.Periodic solution of a delayed predator-prey system with Machaelis-Menten type functional response[J].Comp.Appl.Math,2004,166:453-463.
  • 10Fan Yong-hong,Li Wan-tong,Wang Lin-lin.Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional response[J].Nonlinear Analysis:Real Word Application,2004,5:247-263.

引证文献12

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部