期刊文献+

关于抑制物对肿瘤生长直接效果模型的数学分析 被引量:11

ANALYSIS OF A MATHEMATICAL MODEL OF THE DIRECT EFFECT OF INHIBITORS ON THE GROWTH OF TUMORS
原文传递
导出
摘要 本文研究一个用于描述抑制物对肿瘤生长直接作用效果的数学模型,该模型是对Byrne和chaplain相应模型的一个改进.我们分别在c_1=c_2=0和c_1>0,c_2>o但很小两种情况下研究了该模型解的存在性和解在t→∞时的渐近状况,证明了未血管化的肿瘤在某些情况下趋于消失,而在另一些情况下趋于一个休眠态,且抑制物总能减小肿瘤的半径. In this paper we study a mathematical model of the direct effect of inhibitors on the growth of tumors. The model improves a similar model proposed by H. Byrne and M. Chaplain. We consider seperately the two cases where c1 = c2 = 0 and where c1 > 0, c2 > 0 and they are small. In both cases we establish global existence and uniqueness of a solution, and study the asymptotic behavior of the solution. The result shows that an avscular tumor either gradually disappears or converges to a dormant state, and the inhibitor always reduces the tumor radius.
作者 崔尚斌 艾军
机构地区 中山大学数学系
出处 《应用数学学报》 CSCD 北大核心 2002年第4期617-625,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10171112号)资助项目
关键词 抑制物 肿瘤生长 直接效果模型 数学分析 自由边界问题 Tumor growth, mathematical model, inhibitor, direct effect, free boundary problem
  • 相关文献

参考文献11

  • 1Sutherland R. Cell and Environment Interactions in Tumor Microregions: the Multicell Spheroid Model. Science, 1988, 240:177-184
  • 2Adam J, Bellomo N. A Survey of Models for Tumor-immune System Dynamics. Boston: Birkhiuser, 1997
  • 3Greenspan H. Models for the Growth of Solid Tumors by Diffusion. Stud. Appl. Math., 1972, 51: 317-340
  • 4Adam J. A Simplified Mathematical Model of Tumor Growth. Math. Biosci., 1986, 81:224-229
  • 5Byrne H, Chaplain M. Growth of Nonnecrotic Tumors in the Presence and Absence of Inhibitors. Math. Biosci., 1995, 131:130-151
  • 6Ward J, King J. Mathematical Modeling of Avascular Tumor Growth Ⅱ: Modelling Growth Saturation. IMA J. Math. Appl. Med. Biol., 1998, 15:1-42
  • 7Pettet G, Please C, et al. The Migration of Cells in Multicell Tumor Spheroids. Bull. Math. Biol.,2001, 63:231-257
  • 8Friedman A, Reitich F. Analysis of a Mathematical Models for the Growth of Tumors. J. Math. Biol., 1999, 38:262-284
  • 9Cui S, Friedman A. Analysis of a Mathematical Model of the Effect of Inhibitors on the Growth of Tumors. Math. Biosci., 2000, 164:103-137
  • 10Cui S, Friedman A. Analysis of a Mathematical Model of the Growth of Necrotic Tumors. J. Math. Anal. Appl., 2001, 255:636-677

同被引文献78

  • 1杨清宇,刘荣森.耐甲氧西林金黄色葡萄球菌的研究[J].中华医院感染学杂志,2004,14(4):478-480. 被引量:41
  • 2Greenspan H.Models for the growth of solid tumors by diffusion.Stud Appl Math,1972,51:317-340.
  • 3Greenspan H.On the growth and stability of cell cultures and solid tumors.J Theor Biol,1976,56:229-242.
  • 4Mc Elwain D,Pettet G.Cell migration in multicell spheroids:swimming against the tide.Bull Math Biol,1993,55:655-674.
  • 5Byrne H,Chaplain M.Growth of nonnecrotic tumors in the presence and absence of inhibitors.Math Biosci,1995,130:151-181.
  • 6Byrne H,Chaplain M.Growth of necrotic tumors in the presence and absence of inhibitors.Math Biosci,1996,136:187-216.
  • 7Byrne H,Chaplain M.Free boundary value problems associated with the growth and development of multicellular spheroids.European J Appl Math,1997,8:639-658.
  • 8Word J,King J.Mathematical modeling of vascular tumor growth.IMAJ Math Appl Biol Med,1997,14:53-75.
  • 9Word J,King J.Mathematical modeling of vascular tumor growth Ⅱ:Modeling growth saturation.IMA J Math Appl Biol Med Biol,1998,15:1-42.
  • 10Thompson L,Byrne H.Modeling the internalization of labeled cells in tumor spheroids.Bull Math Biol,1999,61:601-623.

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部