期刊文献+

关于Gelfand-Mazur型的两个定理(英文)

On Two Gelfand-Mazur Type Theorems
下载PDF
导出
摘要 证明了两个Gelfand.Mazur型的定理.其一是:设A是一单位C*-代数,AH≌R,且当h∈Ak时,eh具有凸谱集.则A≌C.这一结果回答了Bhatt等人的问题,给出了他们的结果在实情形中的结论.其二,部分地回答了Bhatt等人的另一个问题,结果是:设A是一复单位厄米Banach*-代数.假设(i)对任意x∈AH,谱集σA(x)的内部是空集.且C\σA(x)是连通的;(ii)A没有非零零因子.则A同构到C. Two Gelfand-Mazur type theorems are proved. One is; Let A be a real unital C*-algebra, AH≌ R, and eA has convex spectrum whenever h ?AK, then A≌C, which provides an answer to one question of Bhatt and others and gives the real analogue of one result of them. Another is : Let A be a complex hermitian Banach *-algebra with identity I. Assume that (1) The interior of the spectrum σA.(x) is an empty set, and C\σA(x) is connected, for any x∈AH. (2) A has no nonzero divisor of zero. Then A is isomorphic to C. This result answers partially another question of Bhatt and others.
出处 《应用泛函分析学报》 CSCD 2002年第4期317-320,共4页 Acta Analysis Functionalis Applicata
关键词 Gelfand-Mazur型 零因子 实C^*-代数 厄米Banach^*-代数 zero divisors real C*-algebra hermitian Banach *-algebra
  • 相关文献

参考文献7

  • 1Bonsall F F, Duncan J. CompleteNormed Algebras[M]. Springer-Verlag, Berlin-Heidelberg-New York, 1973.
  • 2Li B R. Banach Algebras (in Chinese)[M]. Beijing: Academic Press, 1992.
  • 3Li Bing-ren. Introduction to Operator Algebras[M]. Singapore, World Sci, 1992.
  • 4Bhatt S J, Karia D J, Kulkarni S H, Shimpi M E. A note on the Gelfand-Mazurtheorem[J]. Proc Amer Math soc, 1998, 126(10): 2999-3005.
  • 5Li B R. Real Operator algebras[J]. Scientia Sinica, 1979, 22: 733-746.
  • 6Taylor A E, Lay D C. Introduction to Functional Analysis[M], New York: Jhon Wileyand Son Inc, 1980.
  • 7Hungerford T W. Algebra[M]. GTM, Springer, 1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部