期刊文献+

单位球面上的子流形有关截曲率的Pinching定理 被引量:1

The Pinching Theorems about Sectional Curvature of Submanifolds on Unit Sphere
原文传递
导出
摘要 设M是单位球面上不含脐点的子流形,Moebius形式Φ消失,本文讨论M 关于Mobius度量的截曲率的Pinching问题. Let M be a submanifold without umbilic point on unit sphere; its Moebius form Φ vanishes, in this paper the pinching theorems of sectional curvature about Moebius metric are obtained.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第1期37-48,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10261006) 江西省教委资助项目
关键词 单位球面 子流形 截曲率 PINCHING定理 Moebius metric Sectional curvature Blaschke tensor Moebius second fun-damental form Mobius form
  • 相关文献

参考文献1

  • 1Hai Zhong LI Department of Mathematics, Tsinghua University. Beijing 100084. P. R. China Hui Li LIU Department of Mathematics, Northeastern University. Shenyang 110000. P. R. China Chang Ping WANG Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences. Peking University, Beijing 100871, P. R. China Guo Song ZHAO Department of Mathematics, Sichuan University, Chengdu 610064. P. R. China.Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures[J].Acta Mathematica Sinica,English Series,2002,18(3):437-446. 被引量:55

二级参考文献3

  • 1Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1981(2)
  • 2Hans Friedrich Münzner.Isoparametrische Hyperfl?chen in Sph?ren[J].Mathematische Annalen.1980(1)
  • 3Thomas E. Cecil,Patrick J. Ryan.Focal sets, taut embeddings and the cyclides of Dupin[J].Mathematische Annalen.1978(2)

共引文献54

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部