期刊文献+

非交换陈特征的一个注记 被引量:1

A Note on Noncommutative Chern Character for Dirac Operator
原文传递
导出
摘要 此注记利用Moscovici的一个想法和热核渐近展开技术,给出了Clifford模 上Dirac算子的整循环陈特征的一个计算公式. In this note by using an idea of Moscovici and the techniques of asymptotic expansions for heat kernels, an entire cyclic Chern character formula is given for a Dirac operator denned on a Clifford module.
作者 冯惠涛
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第1期57-64,共8页 Acta Mathematica Sinica:Chinese Series
基金 教育部中青年骨干教师基金资助项目 科技司资助项目
关键词 DIRAC算子 整循环上同调 整循环陈特征 JLO上闭链 Dirac operator Entire cyclic cohomology Entire cyclic Chern character JLO cocycle
  • 相关文献

参考文献8

  • 1Connes A., Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules, K-Theory, 1988, 1: 519-548.
  • 2Jaffe A., Lesniewski A., Osterwalder K., Quantum K-theory I, Commun. Math. Phys., 1988, 92: 1-14.
  • 3Connes A., On the Chern character of θ-summable Fredholm modules, Commun. Math. Phys., 1991, 139:171-181.
  • 4Berline N., Getzler E., Vergne M., Heat kernel and dirac operators, Berlin: Springer-Verlag, 1992.
  • 5Getzler E., Szenes A., On the character of a theta-summable Fredholm module, J. Funct. Anal., 1989, 84:345-357.
  • 6Chern S. K., Hu X. D., Equivariant Chern character for the invariant Dirac operator, Michigan Math. J.,1977, 44: 451-473.
  • 7Simon B., Trace ideals and their applications, London Mathematical Society, Lecture Note Series, 35, Cambridge University Press, 1979.
  • 8Yu Y. L., Index theorems and heat kernel methods, Shanghai: Shanghai Scientific and Technical Publishers,1996 (in Chinese).

同被引文献11

  • 1LaffertyJ D, Yu Y L, Zhang W P.A direct geometric proof of Lefschetz fixed point formulas. Trans AMS,1992,329:571~583.
  • 2ChernS, Hu X. Equivariant Cherncharacter for the invariant Dirac operators. Michigan Math J, 1997,44:451~473.
  • 3Freed D. Two index theorems in odd dimensions. Commu Anal Geom, 1998, 6:317~329.
  • 4Lawson B, Michelson M L. Spin Geometry. Princeton: Princeton Univ Press, 1993.
  • 5Atiyah M F, Bott R. The Lefschetz fixed point theorem for elliptic complexes Ⅱ: Applications. Ann of Math, 1968, 88:451~491.
  • 6Berline N, Getzler E, Vergne M. Heat Kernals and Dirac Operator. Berlin: Springer-Veriag, 1992.
  • 7Yu Y L. Local index theorem for Dirac operator. Acta Math Sinica (New Series), 1987, 3:152~169.
  • 8Atiyah M F, Singer I M. The index of elliptic operators Ⅲ. Ann of Math, 1968, 87:546~604.
  • 9Connes A, Moscovici H. The local index theorem in noncommutative geometry. Geom Funct Anal, 1995,5:174~243.
  • 10Figueroa H, Gracia-Bondia J, Varilly J. Elements of Noncommutative Geometry. Boston: Birkhaiuser,2001.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部