期刊文献+

正则Cosine算子函数的乘积扰动定理 被引量:3

Multiplicative Perturbation Theorems for Regularized Cosine Operator Functions
原文传递
导出
摘要 本文研究了正则cosine算子函数的乘积扰动性,在正则化算子C的值域不 一定稠密的一般情形下,获得了若干正则cosine算子函数的乘积扰动定理. In this paper, we investigate multiplicative perturbation of the regularized cosine operator functions. We obtain some multiplicative perturbation theorems for the regularized cosine operator functions without the density of the range of the regularizing operator C.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第1期119-130,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10071079) 教育部高校博士点基金资助项目
关键词 正则cosine算子函数 乘积扰动 非稠值域正则化算子 Regularized cosine operator functions Multiplicative perturbation The regularizing operator with non-dense range
  • 相关文献

参考文献1

共引文献2

同被引文献14

  • 1张祥芝,宋晓秋,胡敏,陈正云.强连续C-半群的概率型估计[J].中国矿业大学学报,2004,33(5):604-606. 被引量:3
  • 2王梅英,蒋志芳,沈雁.局部积分余弦算子函数的生成定理[J].数学进展,2005,34(6):753-759. 被引量:2
  • 3郑权,雷岩松.指数有界的C余弦算子函数[J].系统科学与数学,1996,16(3):242-252. 被引量:19
  • 4G. F. Webb. A representation formula for strongly continuous cosine families[J] 1980,Aequationes Mathematicae(1):251~256
  • 5M. Jung. Multiplicative perturbations in semigroup theory with the (Z)-condition[J] 1996,Semigroup Forum(1):197~211
  • 6S. Piskarev,S. -Y. Shaw. Perturbation and comparison of cosine operator functions[J] 1995,Semigroup Forum(1):225~246
  • 7Aequationes Mathematicae, 1980, LE C S, SHAW S Y. Represention Formulas for Cosine and Sine Functions of Operators FJ~. Aequationes Mathemati- cae, 1985, 29: 162-171.
  • 8CIORANESCU I. On the Second Order Cauchy Problem Associated with a Linear Operator [J]. Journal o{ Math Analy- sis and Applications, 1991, 154: 238-242.
  • 9LE C S, SHAW S Y. Represention Formulas for Cosine and Sine Functions of Operators [-J~. Aequationes Mathemati- cae, 1985, 29: 162-171.
  • 10CHUNG C K, SHAW S Y. C-Cosine Function and the Abstract Cauchy Problem, I I-J]. Journal of Mathematica.. Analy sis and Applications, 1997, 210.. 632-646.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部