摘要
对于Riemann曲面M到欧氏空间R+p的共形浸入f,本文引入了其伴随形式的概念;利用伴随形式和法丛的联络,我们建立了f是Gj-可形变的充分必要条件.主要结论如下:(1)如果f是G*-可形变的,则f具有平坦的法丛和闭的伴随形式;(2)当M是单连通时,如果f具有平坦的法丛和闭的伴随形式,则f是G*-可形变的.
In this article, we shall give the necessary and suffcient conditions for a conformally immersed surface f : M →R2+p to be G*-deformable. After introducing the concept of adjoint form for /, the following results are proved: (1) If / is G*-deformable, then the normal bundle of / is flat and the adjoint form is closed; (2) When M is simply connected, then / is G*-deformable if it has flat normal bundle and closed adjoint form.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2003年第1期153-160,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(19971060)
河南省自然科学基金资助项目
河南省教育厅资助项目
关键词
共形浸入
G^*-形变
平坦法丛
伴随形式
Conformal immersion
G*-deformation
Flat normal bundle
Specially asso- ciated forms