期刊文献+

拓扑群在连续统上的膨胀作用 被引量:1

Topological Group Acts Expansively on Continua
原文传递
导出
摘要 本文把一个同胚的膨胀作用推广到拓扑群的情形,并研究了有限生成离散群 的膨胀作用,得到了如下结果:Z×Z不能膨胀地作用在单位闭区间I上,而自由积 Z★Z可以膨胀地作用在I上. In this paper, the concept of expansive action of homeomorphism is generalized to the case of topological group, the expansiveness of a finitely generated topological group with discrete topology is studied and the following result is obtained: Z×Z can not acts expansively on the unit interval I, but the free product Z★Z can acts expansively on it.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第1期197-202,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10071069) 苏州大学青年基金资助项目(Q3107222)
关键词 拓扑群 连续统 膨胀同胚 拓扑群连续作用 拓扑共轭 Topological group Continuum Expansive homeomorphism Continuous action of topological group Topological conjugation
  • 相关文献

参考文献9

  • 1O'Brien T., Reddy W., Each compact orientable surface of positive genus admits an e xpansive homeomorphism, Pacific J. Math., 1970, 35: 737-741.
  • 2Williams R. F., A note on unstable homeomorphisms, Proc. Amer. Math. Soc., 1955, 6: 308-309.
  • 3Bryant B. F., Unstable self-homeomorphisms of a compact space,vanderbilt university thesis, Nashville, TN,1954.
  • 4Jakobsen J. F., Utz W. R., The nonexistence of expansive homeomorphisms of a closed 2-cell, Pacific J. Math.,1960, 10: 1319-1321.
  • 5Kawamura K., A direct proof that each Peano cotinuum with a free arc admits no expansive homeomorphisms,Tsukuba J. Math., 1988, 12: 521-524.
  • 6Kato H., The nonexistence of expansive homeomorphisms of dendroids, Fund. Math., 1990, 136: 37-43.
  • 7Kato H., The nonexistence of expansive homeomorphisms of 1-dimensional compact ANRs, Proc. Amer.Math. Soc., 1990, 108: 267-269.
  • 8Kato H., The nonexistence of expansive homeomorphisms of Peano continuum in the plane, Topology Appl.,1990, 34: 161-165.
  • 9Li J., Feng X., An introduction to topological groups, Beijing: Science Publishing House, 1997 (in Chinese).

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部