期刊文献+

濒危生物种群生长的动态特性及其调控方法

Dynamic Characteristics and Its Control for Population of Being in Imminent Danger
下载PDF
导出
摘要 使用数学方法研究了表达南极蓝鲸、鳍鲸、野生信鸽等濒危生物种群的非临界退偿模型与临界退偿模型在人类开发过程中所呈现出来的动态特性及其调控方法·研究结果表明 ,对非临界退偿系统而言 ,采用投入比率E小于r(k -k0 ) /qk的线性状态反馈控制 :u(t) =qEx ,可以使种群的密度最终平衡在一个相对合理的水平上 ;对临界退偿系统而言 ,采用投入比率E满足kk0 /q <E <k/q的反馈控制 :u(t) =(rqE/k) (x -k0 ) ,可以使开发系统的增长率不再具有临界退偿性质 ,从而保证种群不会发生灭绝现象· The dynamic characteristics and its control method for population with depensation model of being in imminent danger were studied by using mathematics analysis method during exploitation. The dynamic characteristics and its control method for population with depensation model of being in imminent danger were studied by mathematics analysis method during exploitation. The research shows that there exists a linear state feedback with E<r(k-k 0)/qk,such that the population of nocritical depensation model can balance at a suitable level. And there exists a linear feedback of (x-k 0),with,kk 0/q<E<k/q,such that the population of critical depensation model is not in depensations and couldn′t be extinct.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第2期186-189,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目 ( 70 2 710 6 6 )
关键词 濒危生物种群 动态特性 调控方法 退偿模型 投入比率 灭绝 反馈控制 平衡点 生长特性 数学方法 population being in imminent danger depensation model ratio of investment extinction feedback control equilibrium
  • 相关文献

参考文献8

  • 1Colin W C. Mathematical bioeconomics: the optimal management of renewable resources[M]. NY:John Wiley & Sons Inc,1990.8-35.
  • 2Jing H Y. Feedback control for n-species food chain systems[A]. In:Arlington,VA. Proceedings of the American Control Conference[C]. NY: Prentice Hall, 2001.2809-2810.
  • 3荆海英.n阶食物链反馈控制系统的稳定性与永久持续生存[J].生物数学学报,2002,17(1):12-20. 被引量:6
  • 4Dunber S R. Persistence in models of predator-prey populations with diffusion[J]. J Diff Equ, 1986,65:117-138.
  • 5Gard T C. Persistence in food chain with general interactions[J]. Math Biosci, 1980,51:165-174.
  • 6Takeuchi Y. Conflict between the need forage and the need to avoid competition: persistence of two-species model[J]. Math Biosci,1990,99:184-194.
  • 7Freedman H I, Waltman P. Persistence in a model of three competitive population[J]. Math Biosci, 1985,73:89-101.
  • 8Hutson V,Vickers G T. A criterion for permanence,coexistence of species with an application to a two-prey one-predator systems[J]. Math Biosci, 1983,63:253-269.

二级参考文献1

  • 1张炳根.具一步以上的食物链生态系统的稳定性[J].应用数学学报,1983,6(2):236-239.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部