期刊文献+

负载模拟器的DRNN神经网络控制 被引量:13

DRNN NEURAL NETWORK CONTROL ON ELECTRO-HYDRAULIC LOAD SIMULATOR
下载PDF
导出
摘要 为了增强负载模拟器的自适应能力以抵抗系统的非线性、时变参数及运动扰动的影响,特提出利用对角回归神经网络(DRNN)与PID的并联进行控制与调节的控制方法。PID保证了系统的初始稳定性,由于神经网络引入了速度信号作为参考输入,使系统具有了很好的自适应消扰能力,减小了多余力的影响。仿真和试验证明了该方法的可行性和有效性,收到了很好的控制效果。 A new control structure for load simulator to improve its performance is presented, in which the DRNN neural network is adopted to combine with PID controller. The DRNN is of ability to deal with dynamic problem, which is used to identify the broad sense inverse model. It includes system input, output and disturbance. The nonlinear problem will be solved properly. The neural network PID controller is designed by requirement for steady, which overcome the shortcoming of the only neural network controller. The speed is taken as reference input of the DRNN neural network, which improves the system's robustness to the influence of extraneous force. The simulation and experiment are carried out, which show a good result. This method is of validity and robustness.
作者 华清 焦宗夏
出处 《机械工程学报》 EI CAS CSCD 北大核心 2003年第1期15-19,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50075006)。
关键词 电液负载模拟器 神经网络控制 智能PID 多余力补偿 Electric-hydraulic load simulator Neural network controller Intelligent PID Extraneous force
  • 相关文献

参考文献2

  • 1张乃尧 阎平凡.神经网络与模糊控制[M].清华大学出版社,1999..
  • 2王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..

共引文献73

同被引文献116

引证文献13

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部