期刊文献+

考虑振幅弥散影响的波浪变形模型 被引量:2

Wave propagation model with the consideration of amplitude dispersion
下载PDF
导出
摘要 本文给出了一个精度高于Zhao和Anastasiou (1993)显式近似Kirby和Dalrymple的非线性经验弥散关系的显式表达式 ,该显式表达式与Kirby和Dalrymple的非线性经验弥散关系吻合很好。用本文给出的非线性弥散关系显式表达式 ,结合含弱非线性经效应的缓坡方程的前进波折近似方程组 ,建立了一个考虑振幅弥散影响的波浪变形模型 ,用文中模型对波浪的变形进行了计算 ,将计算结果和试验数据 (试验数据采用Berkhoff等 (1982 )验证数学模型可信性试验 )进行了比较。结果表明 ,采用本文的波浪变形模型 ,所得计算结果与试验结果更为吻合。 In the present study, an explicit non linear dispersion expression approximated to the nonlinear dispersion relation developed by Kirby and Dalrymple (1986) was deduced. This explicit expression which gives the simplification to facilitate the calculation of nonlinear terms in the mild slope equation was proved to have much better agreement with the dispersion relation of Kirby and Dalrymple than that of Zhao and Anastasiou (1993). Usig this mild slope equation and experimented data of Berkhoff et al.(1982) for the case of submerged elliptical island on a slope, a wave propagation model with amplitude dispersion was established. The results show that it is better to use a set of progress wave approximation to mide slope equation with some weak non linearity than that with linearity. It is advantageous and feasible to use a mild slope equation with weakly non linear effect for modeling the non linear of wave propagation.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2002年第6期676-683,共8页 Chinese Journal of Hydrodynamics
关键词 振幅弥散 显式非线性经验弥散关系 弱非线性效应 前进波近似 amplitude dispersion explicit non linear dispersion relation weakly non linear effect progress waves' approximation
  • 相关文献

参考文献17

  • 1洪广文,冯卫兵,张洪生.海岸河口水域波浪传播数值模拟[J].河海大学学报(自然科学版),1999,27(2):1-9. 被引量:15
  • 2BERKHOFF J C W, Computation of combined refraction-diffraction[A].ASCE eds. Proc. of the 13th Conf.on Coastal Eng.[C]. New York: ASCE, 1972, I: 471-490.
  • 3BERKHOFF J C W, BOOIJ N and RADDER A C. Verification of numerical wave propagation models for simple harmonic linear water waves[J]. Coastal Eng. 1982, 6: 255-279.
  • 4BOOIJ N. Gravity Waves on Water with Non-uniform Depth and Current[R]. Communication on Hydraulics, Dept of Civil Engrg, Delft Univ of Technology, 1981, (811).
  • 5DALRYMPLE R A. Model for refraction of water wave[J]. J. Wtrwy., Port, Coast., and Oc. Engrg.,1988, 114(4): 423-435.
  • 6DINGEMANS M W. Water Wave Propagation over Uneven Bottoms[M]. Singapore: World Scientific Press, 1997.
  • 7HEDGES T S. An empirical modification to linear wave theory[J]. Proc. Inst. Civil. Eng., 1976, 61: 575-579.
  • 8KAIHATU J M and KIRBY J T. Two-dimension parabolic modeling of extended Boussinesq equation[J]. J. Wtrwy., Port, Coast., and Oc. Engrg., 1998, 124(2): 57-67.
  • 9KIRBY J T and DALRYMPLE R A. Verification of parabolic equation for propagation of weakly nonlinear waves[J]. Coastal Engineering, 1984, 8: 219-232.
  • 10KIRBY J T and DALRYMPLE R A. An approximate model for nonlinear dispersion in monochromatic wave propagation models[J]. Coastal Engineering, 1986, 9: 545-561.

二级参考文献8

  • 1洪广文 成功大学.非均匀水流中波浪折射-绕射数学模型.1995两岸港口及海岸开发研讨会论文集:上集[M].台南:成功大学出版社,1995.81-96.
  • 2洪广文 中国海洋工程学会.波浪折射、绕射数学模型.第七届全国海岸工程学术讨论会论文集:下集[M].北京:海洋出版社,1994.808-815.
  • 3洪广文 中国海洋工程学会.缓变水深和流场水域波浪折射、绕射数值模拟.第八届全国海岸工程学术讨论会论文集:下集[M].北京:海洋出版社,1997.703-714.
  • 4洪广文,第八届全国海岸工程学术讨论会论文集.下,1997年,703页
  • 5洪广文,1995两岸港口及海岸开发研讨会论文集.上,1995年,81页
  • 6洪广文,第七届全国海岸工程学术讨论会论文集.下,1994年,808页
  • 7Liu P L F,J Geophys Res,1983年,88卷,7期,4421页
  • 8洪广文.不完全反射边界楔形堤和隅角堤波浪绕射理论解析解[J].海洋学报,1990,12(4):487-504. 被引量:7

共引文献14

同被引文献27

  • 1张扬,李瑞杰,郑金海.波浪的非线性频散关系[J].水科学进展,2004,15(4):448-453. 被引量:4
  • 2陈汉宝,刘海源.航道对多方向波传播影响[J].海洋工程,2005,23(4):27-32. 被引量:3
  • 3王红川,左其华,潘军宁.波浪传播数值模型波向角计算[J].水动力学研究与进展(A辑),2006,21(1):139-144. 被引量:7
  • 4BERKHOFF J C W. Computation of combined refraction-diffraction[ C]//Proc 13th International Coastal Engineering Conference. Vancouver: ASCE, 1972,1 : 741 - 790.
  • 5BELLOTFI G, GIAN M B, PAOLO D G. Internal generation of waves in 2D fully elliptic mild-slope equation FEM models[J]. Coastal Engineering, 2003, 49(1 - 2) :71 - 81.
  • 6KHELLAF M C, BOUHADEF M. Modified mild slope equation and open boundary conditions [ J]. Ocean Engineering, 2004,31 (13) : 1713 - 1723.
  • 7PANCHANG V G, PEARCE B R, GE W, et al. Solution to the mild-slope wave problem by iteration [J]. Applied Ocean Research, 1991,13 (4) : 187 - 199.
  • 8LIB. A generalized conjugate gradient model for the mild slope equation [J]. Coastal Engineering, 1994, 23(3 - 4) : 215 - 225.
  • 9PANCHANG V G, DEMIRBILEK Z. Simulation of waves in harbors using two-dimensional elliptic equation models[J]. Advances in Coastal and Ocean Engg, 2001, 7:125- 162.
  • 10DALRYMPLE R A, KIRBY J T, HWANG P A. Wave diffraction due to areas of high energy dissipation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1984, 110(1): 67- 79.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部